Preventions
Phytochemicals to prevent floater
1. Curcumin is a phytochemical
found abundant in the plant. In acidic solutions (pH <7.4) it turns
yellow, whereas in basic (pH > 8.6) solutions it turns bright red.
a Anti-inflammatory agent
According to the study of evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation. by Satoskar RR, Shah SJ, Shenoy SG., poated in US National Library of Medicine National Institutes of Health, researchers wrote that In this model of postoperative inflammation, the anti-inflammatory activity of curcumin (diferuloyl methane) was investigated in comparison with phenylbutazone and placebo. Phenylbutazone and curcumin produced a better anti-inflammatory response than placebo.
b. Antioxidants
In a study of `Protective Role of Curcumin Against Oxidative Stress,Immunosuppressive and Cytotoxic Effects of Lead Exposure` by Mahmoud El-sherbiny, Azza Araffa, Mona Mantawy and Hany M. Hassan (Therapeutic Chemistry Department, National Research Centre - Dokki, Giza, Egypt. Immunology Department, Animal Reproduction Research Institute (ARRI), Giza, Egypt), posted in World Applied Sciences Journal 12 (10): 1832-1838, 2011, researchers found that ground, curcumin's benefits on tumorigenesis are thought to be mediated by its antiinflammatory activity; however, these effects have not been well characterized in a mouse model of colon cancer. Briefly, curcumin is efficacious for chronic nonbacterial prostatitis in rats and the action mechanism may be associated with its decreasing effect on the proinflammatory cytokines IL-8 and TNF-alpha in the blood and tissues. Curcumin has protective effect on DNA of pulmonary cells. There was direct evidence for an involvement of curcumin in reducing arsenic and lead induced oxidative stress in Swiss albino mice by virtue of its antioxidant potential and trapping of free radicals. The current investigation concluded that curcumin has protective role against cytotoxic, immunosuppressive , oxidative and immunosuppressive profile that perform due to lead acetate exposure.
According to the study of evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation. by Satoskar RR, Shah SJ, Shenoy SG., poated in US National Library of Medicine National Institutes of Health, researchers wrote that In this model of postoperative inflammation, the anti-inflammatory activity of curcumin (diferuloyl methane) was investigated in comparison with phenylbutazone and placebo. Phenylbutazone and curcumin produced a better anti-inflammatory response than placebo.
b. Antioxidants
In a study of `Protective Role of Curcumin Against Oxidative Stress,Immunosuppressive and Cytotoxic Effects of Lead Exposure` by Mahmoud El-sherbiny, Azza Araffa, Mona Mantawy and Hany M. Hassan (Therapeutic Chemistry Department, National Research Centre - Dokki, Giza, Egypt. Immunology Department, Animal Reproduction Research Institute (ARRI), Giza, Egypt), posted in World Applied Sciences Journal 12 (10): 1832-1838, 2011, researchers found that ground, curcumin's benefits on tumorigenesis are thought to be mediated by its antiinflammatory activity; however, these effects have not been well characterized in a mouse model of colon cancer. Briefly, curcumin is efficacious for chronic nonbacterial prostatitis in rats and the action mechanism may be associated with its decreasing effect on the proinflammatory cytokines IL-8 and TNF-alpha in the blood and tissues. Curcumin has protective effect on DNA of pulmonary cells. There was direct evidence for an involvement of curcumin in reducing arsenic and lead induced oxidative stress in Swiss albino mice by virtue of its antioxidant potential and trapping of free radicals. The current investigation concluded that curcumin has protective role against cytotoxic, immunosuppressive , oxidative and immunosuppressive profile that perform due to lead acetate exposure.
c. Cellular Processing
According to the research of `Evidence against the rescue of defective DeltaF508-CFTR cellular processing by curcumin in cell culture and mouse models.`by Song Y, Sonawane ND, Salinas D, Qian L, Pedemonte N, Galietta LJ, Verkman AS. (Source from Department of Medicine and Physiology, Cardiovascular Research Institute, University of California, San Francisco, California 94143, USA. Copyright 2004 American Society for Biochemistry and Molecular Biology, Inc.) posted in US National Library of Medicine National Institutes of Health, researchers found that assay of serum curcumin by ethyl acetate extraction followed by liquid chromatography/mass spectrometry indicated a maximum serum concentration of 60 nm, well below that of 5-15 microm, where cellular effects by sarcoplasmic/endoplasmic reticulum calcium pump inhibition are proposed to occur. Our results do not support further evaluation of curcumin for cystic fibrosis therapy.
According to the research of `Evidence against the rescue of defective DeltaF508-CFTR cellular processing by curcumin in cell culture and mouse models.`by Song Y, Sonawane ND, Salinas D, Qian L, Pedemonte N, Galietta LJ, Verkman AS. (Source from Department of Medicine and Physiology, Cardiovascular Research Institute, University of California, San Francisco, California 94143, USA. Copyright 2004 American Society for Biochemistry and Molecular Biology, Inc.) posted in US National Library of Medicine National Institutes of Health, researchers found that assay of serum curcumin by ethyl acetate extraction followed by liquid chromatography/mass spectrometry indicated a maximum serum concentration of 60 nm, well below that of 5-15 microm, where cellular effects by sarcoplasmic/endoplasmic reticulum calcium pump inhibition are proposed to occur. Our results do not support further evaluation of curcumin for cystic fibrosis therapy.
2. Theaflavin-3-gallate, a
theaflavin derivative, is phytochemicals of Flavan-3-ols, in the group
of Flavonoids (polyphenols) found abundantly in black tea.
a. Antioxidant capacities
In the comparison of TF derivatives (theaflavin (TF(1)), theaflavin-3-gallate (TF(2)A), theaflavin-3'-gallate (TF(2)B), and theaflavin-3,3'-digallate (TF(3))) in scavenging reactive oxygen species (ROS) in vitro, indicated that positive antioxidant capacities of TF(2)B on singlet oxygen, hydrogen peroxide, hydroxyl radical, and the hydroxyl radical-induced DNA damage in vitro were found, according to "Evaluation of the antioxidant effects of four main theaflavin derivatives through chemiluminescence and DNA damage analyses" by Wu YY, Li W, Xu Y, Jin EH, Tu YY.(22)
In the comparison of TF derivatives (theaflavin (TF(1)), theaflavin-3-gallate (TF(2)A), theaflavin-3'-gallate (TF(2)B), and theaflavin-3,3'-digallate (TF(3))) in scavenging reactive oxygen species (ROS) in vitro, indicated that positive antioxidant capacities of TF(2)B on singlet oxygen, hydrogen peroxide, hydroxyl radical, and the hydroxyl radical-induced DNA damage in vitro were found, according to "Evaluation of the antioxidant effects of four main theaflavin derivatives through chemiluminescence and DNA damage analyses" by Wu YY, Li W, Xu Y, Jin EH, Tu YY.(22)
b. Anti inflammation
found that a single topical application of equimolar of black tea constituents (TF, theaflavin-3-gallate, theaflavin-3'-gallate, and theaflavin-3,3'-digallate) strongly inhibited TPA-induced edema of mouse ears. Application of TFs mixture to mouse ears 20 min prior to each TPA application once a day for 4 days inhibited TPA-induced persistent inflammation, as well as TPA-induced increase in IL-1beta and IL-6 protein levels. TFs also inhibited arachidonic acid (AA) metabolism via both cyclooxygenase (COX) and lipoxygenase pathways, according to "Inhibitory effects of black tea theaflavin derivatives on 12-O-tetradecanoylphorbol-13-acetate-induced inflammation and arachidonic acid metabolism in mouse ears" by Huang MT, Liu Y, Ramji D, Lo CY, Ghai G, Dushenkov S, Ho CT.(23)
found that a single topical application of equimolar of black tea constituents (TF, theaflavin-3-gallate, theaflavin-3'-gallate, and theaflavin-3,3'-digallate) strongly inhibited TPA-induced edema of mouse ears. Application of TFs mixture to mouse ears 20 min prior to each TPA application once a day for 4 days inhibited TPA-induced persistent inflammation, as well as TPA-induced increase in IL-1beta and IL-6 protein levels. TFs also inhibited arachidonic acid (AA) metabolism via both cyclooxygenase (COX) and lipoxygenase pathways, according to "Inhibitory effects of black tea theaflavin derivatives on 12-O-tetradecanoylphorbol-13-acetate-induced inflammation and arachidonic acid metabolism in mouse ears" by Huang MT, Liu Y, Ramji D, Lo CY, Ghai G, Dushenkov S, Ho CT.(23)
3. Gingerole, is also known as gingerol, a phytochemical of Flavonoids (polyphenols) found in
fresh ginger. and in variety of other plants. The herb has been used
to treat nausea and vomiting of pregnancy, motion sickness,
rheumatoid arthritis, relieve migraine, etc.
In
the investigation of the effectiveness of chemical constituents of
Zingiber officinale Rosc. (Zingiberaceae)in treating oxidative stress
found that compounds [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol of the herb scavenges
of 1,1-diphenyl-2-picyrlhydrazyl (DPPH), superoxide and hydroxyl
radicals, inhibitsof N-formyl-methionyl-leucyl-phenylalanine (f-MLP)
induced reactive oxygen species (ROS) production in human
polymorphonuclear neutrophils (PMN), lipopolysaccharide induced nitrite
and prostaglandin E(2) production in RAW 264.7 cells, according to the
study of "Comparative antioxidant and anti-inflammatory effects of
[6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol" by Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN(24)
4. Epigallocatechin, including
catechins, is a phytochemical of Flavan-3-ols, in the group of
Flavonoids (polyphenols), found abundantly in green tea, St John wort,
black Tea, carob flour, Fuji apples, etc.
a. Cholesterol
In the examination of the influence of green tea extract, epicatechin (EC), epicatechin galate (ECG) as well as epigallocatechin galate (EGCG) on oxidative modifications of LDL of human blood serum, found that Catechins and green tea abilities to protect lipophilic antioxidant--alpha-tocopherol against oxidation have been also examined. The results reveal that peroxidation of LDL is markedly prevented by green tea extract and in a slightly weaker way by catechins (EGCG in particular), which is manifested by a decrease in concentration of conjugated dienes, lipid hydroperoxides, MDA, dityrosine and by an increase in tryptophan content, according to "The comparison of effect of catechins and green tea extract on oxidative modification of LDL in vitro" by Ostrowska J, Skrzydlewska E.(25)
b. Anti diabetes
In the observation of the effect of tea catechins (epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG) and epicatechin (EC)) on markers of oxidative stress (malondialdehyde (MDA), reduced glutathione (GSH) and membrane -SH group) in erythrocytes from type 2 diabetics, found that tea catechins protect erythrocytes from t-BHP-induced oxidative stress, the effect being more pronounced in diabetic erythrocytes. The relative effectiveness of individual catechins are in the order of EGCG>ECG>EGC>EC. 7. We hypothesise that a higher intake of catechin-rich food by diabetic patients may provide some protection against the development of long-term complications of diabetes, according to "Protective role of tea catechins against oxidation-induced damage of type 2 diabetic erythrocytes" by Rizvi SI, Zaid MA, Anis R, Mishra N.(26)
c. Antioxidants
In the evaluation of the effects of the main polyphenolic components extracted from green tea leaves, i.e. (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin gallate (EGCG) and gallic acid (GA), against free radical initiated peroxidation of human low density lipoprotein (LDL), found that The antioxidative action of the green tea polyphenols includes trapping the initiating and/or propagating peroxyl radicals with the activity sequence EC>EGCG>ECG>EGC>GA for the AAPH initiated peroxidation, and reducing the alpha-tocopheroxyl radical to regenerate alpha-tocopherol with the activity sequence of ECG>EC>EGCG>EGC>GA and ECG>EGCG>GA>EC>EGC for the AAPH-initiated and BP-photosensitized peroxidations respectively, according to "Antioxidative effects of green tea polyphenols on free radical initiated and photosensitized peroxidation of human low density lipoprotein" by Liu Z, Ma LP, Zhou B, Yang L, Liu ZL.(27)
In the examination of the influence of green tea extract, epicatechin (EC), epicatechin galate (ECG) as well as epigallocatechin galate (EGCG) on oxidative modifications of LDL of human blood serum, found that Catechins and green tea abilities to protect lipophilic antioxidant--alpha-tocopherol against oxidation have been also examined. The results reveal that peroxidation of LDL is markedly prevented by green tea extract and in a slightly weaker way by catechins (EGCG in particular), which is manifested by a decrease in concentration of conjugated dienes, lipid hydroperoxides, MDA, dityrosine and by an increase in tryptophan content, according to "The comparison of effect of catechins and green tea extract on oxidative modification of LDL in vitro" by Ostrowska J, Skrzydlewska E.(25)
b. Anti diabetes
In the observation of the effect of tea catechins (epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG) and epicatechin (EC)) on markers of oxidative stress (malondialdehyde (MDA), reduced glutathione (GSH) and membrane -SH group) in erythrocytes from type 2 diabetics, found that tea catechins protect erythrocytes from t-BHP-induced oxidative stress, the effect being more pronounced in diabetic erythrocytes. The relative effectiveness of individual catechins are in the order of EGCG>ECG>EGC>EC. 7. We hypothesise that a higher intake of catechin-rich food by diabetic patients may provide some protection against the development of long-term complications of diabetes, according to "Protective role of tea catechins against oxidation-induced damage of type 2 diabetic erythrocytes" by Rizvi SI, Zaid MA, Anis R, Mishra N.(26)
c. Antioxidants
In the evaluation of the effects of the main polyphenolic components extracted from green tea leaves, i.e. (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin gallate (EGCG) and gallic acid (GA), against free radical initiated peroxidation of human low density lipoprotein (LDL), found that The antioxidative action of the green tea polyphenols includes trapping the initiating and/or propagating peroxyl radicals with the activity sequence EC>EGCG>ECG>EGC>GA for the AAPH initiated peroxidation, and reducing the alpha-tocopheroxyl radical to regenerate alpha-tocopherol with the activity sequence of ECG>EC>EGCG>EGC>GA and ECG>EGCG>GA>EC>EGC for the AAPH-initiated and BP-photosensitized peroxidations respectively, according to "Antioxidative effects of green tea polyphenols on free radical initiated and photosensitized peroxidation of human low density lipoprotein" by Liu Z, Ma LP, Zhou B, Yang L, Liu ZL.(27)
5. Etc.
Chinese Secrets To Fatty Liver And Obesity Reversal
Use The Revolutionary Findings To Achieve
Optimal Health And Loose Weight
Super foods Library, Eat Yourself Healthy With The Best of the Best Nature Has to Offer
Back to General health http://kylejnorton.blogspot.ca/p/general-health.html
Back to Kyle J. Norton Home page http://kylejnorton.blogspot.ca
Sources
Use The Revolutionary Findings To Achieve
Optimal Health And Loose Weight
Super foods Library, Eat Yourself Healthy With The Best of the Best Nature Has to Offer
Back to General health http://kylejnorton.blogspot.ca/p/general-health.html
Back to Kyle J. Norton Home page http://kylejnorton.blogspot.ca
Sources
No comments:
Post a Comment