Wednesday, 18 March 2015

The Holistic approach for Prevention, controlling and Treatment of Candida Albicans Overgrowth - Healing the intestinal membrane

Weight Loss the Easy Ways
Andrea Albright Featured on Health and Fitness Jan. 2015
will Personally Coach You How to Get There The Easy Way

If You Are Looking For a SoulMate
Celebrity Patti Stanger Will Coach You To Get Him/Her
and Keep Him/Her for Good,The Simple Way

By Kyle J. Norton Health article writer and researcher; Over 10.000 articles and research papers have been written and published on line, including world wide health, ezine articles, article base, healthblogs, selfgrowth, best before it's news, the karate GB daily, etc.,.
Named TOP 50 MEDICAL ESSAYS FOR ARTISTS & AUTHORS TO READ by Named 50 of the best health Tweeters Canada - Huffington Post
Nominated for shorty award over last 4 years
Some articles have been used as references in medical research, such as international journal Pharma and Bio science, ISSN 0975-6299.

What is Candida Albicans

Candida albicans are members of a large group of micro organism whose cells contain complex structures enclosed within the membranes, including yeast(2)(3), fungi(4)(5)(6), and mold(6) that live among the gut flora in the human mouth and gastrointestinal tract. In fact, under normal circumstances, Candida albicans that do not cause harmful effects, but overgrowth result in candidiasis. Non-albicans Candida (NAC) species cause 35-65% of all candidaemias in the general patient population(1). According to joint study, in many cases, biofilm(microorganisms with cells stick to each other on a surface) formation(7) gene mutations(8) and overexpression of genes(9)(10) are often associated with increased Candida resistance toward antifungal agents.

Treatments and controllings

Healing the intestinal membrane
1. L-glutamine
L-glutamine is one of the 20 amino acids encoded by the standard genetic code and used to treat certain gastrointestinal disorders(342)(343) by serving as a source of fuel for the cells that line the gastrointestinal tract. According to Ankara University, L-glutamine inhibited the over growth of candida through its antimutagenic and antimicrobial activities(344).

2. N-acetyl-glucosamine
N-acetyl-glucosamine is a monosaccharide derivative of glucose that supports the digestive track function and maintains healthy intestinal lining by stimulating cell growth in the intestinal track(345). According to 1National Institute of Plant Genome Research, GIG2 (GlcNAc-induced gene 2). involved in the metabolism of N-acetylneuraminate (sialic acid), effectively decrease in fungal burden in mouse model(346).

3. Rice-bran oil
Rice-bran oil, extracted from the germ and inner husk of rice, containing a compound gamma-oryzanol(347) showed to reduce the risk of gastric ulcers caused by stress while at the same time maintaining gastrointestinal motility(348). According to Manipal Academy of Higher Education (Deemed University, rice bran oil immobilized lipase from Candida, a potential pathway for fungal overgrowth(349).

4. Pancreatic enzymes products
Pancreatic enzymes, found as supplements and in certain foods allow more bacteria to grow in the intestine enabling the food to be digested a lot easier(350). Insufficient pancreatic enzymes can quickly encourage Candida overgrowth in the digestive tracts(351).

5. Butyric acid
Butyric acid, a fatty acid occurring in the form of esters in animal fats and plant oils, has found to be effective in inhibited pathogenic organisms(352), improved digestion and promoted intestinal health(353) by producing bacteria to feed on lactic acid, then multiplying and revving up their production(354) . Butyric acid also consists anti-inflammatory property(355) and strengthens the intestinal mucosal barrier.(356).

5. Fructo-oligosaccharides(FOS)
Fructo-oligosaccharides(FOS) is a class of oligosaccharides used as an artificial or alternative sweetener(357), extracted from fruits and vegetables such as bananas, onions, chicory root, garlic, asparagus, barley, wheat, tomatoes, and leeks(358). It is inulin-type prebiotics(359), stimulated the growth of friendly bacteria in the intestine track to counter react to other bad bacteria(360)(362) such as candida but it may cause gas formation, through increasing faecal biomass and water content of the stools, for improvement of bowel habits(361)

6. Etc.

+ References
(1) Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance by Krcmery V1, Barnes AJ.(PubMed)
(2) Pathogenicity and drug resistance in Candida albicans and other yeast species. A review by Mishra NN1, Prasad T, Sharma N, Payasi A, Prasad R, Gupta DK, Singh R.(PubMed)
(3)  Multidrug resistance in yeast Candida by Prasad R1, Kapoor K.(PubMerd)
(4) New evidence that Candida albicans possesses additional ATP-binding cassette MDR-like genes: implications for antifungal azole resistance. by Walsh TJ1, Kasai M, Francesconi A, Landsman D, Chanock SJ.(PubMed)
(5) Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug Sanglard D1, Kuchler K, Ischer F, Pagani JL, Monod M, Bille J.(PubMed)
(6) Structural analysis of phospho-D-mannan-protein complexes isolated from yeast and mold form cells of Candida albicans NIH A-207 serotype A strain by Shibata N1, Fukasawa S, Kobayashi H, Tojo M, Yonezu T, Ambo A, Ohkubo Y, Suzuki S.(PubMed)
(7) The effect of antifungal combination on transcripts of a subset of drug-resistance genes in clinical isolates of Candida species induced biofilms by Ibrahim NH1, Melake NA2, Somily AM3, Zakaria AS4, Baddour MM5, Mahmoud AZ6(PubMed)
(8) Antifungal drug resistance in pathogenic fungi. by Vanden Bossche H1, Dromer F, Improvisi I, Lozano-Chiu M, Rex JH, Sanglard D.(PubMed)
(9) The genetic basis of fluconazole resistance development in Candida albicans by Morschhäuser J1.(PubMed)
(10) A proteomic approach to understanding the development of multidrug-resistant Candida albicans strains by Kusch H1, Biswas K, Schwanfelder S, Engelmann S, Rogers PD, Hecker M, Morschhäuser J.(PubMed)
(342) Glutamine supplementation for young infants with severe gastrointestinal disease. by Brown JV1, Moe-Byrne T, McGuire W.(PubMed)
(343) Glutamine and intestinal barrier function ,By Wang B1, Wu G, Zhou Z, Dai Z, Sun Y, Ji Y, Li W, Wang W, Liu C, Han F, Wu Z.(PubMed)
(344) Schiff bases attached L-glutamine and L-asparagine: first investigation on antimutagenic and antimicrobial analyses by Sakiyan I1, Anar M, Oğütcü H, Agar G, Sarı N.(PubMed)
(345)Explore The Truth On Cures For Yeast Infection(Thing for Ladies)
(346) and maintains healthy intestinal lining(Thing for Ladies)
(347) Role of gamma-oryzanol in drought-tolerant and susceptible cultivars of rice (Oryza sativa L.) by Kumar MS, Dahuja A, Rai RD, Walia S, Tyagi A.(PubMed)
(348) [Effects of gamma-oryzanol on gastric lesions and small intestinal propulsive activity in mice].
[Article in Japanese] by Ichimaru Y, Moriyama M, Ichimaru M, Gomita Y.(PubMed)
(349) Hydrolysis of rice bran oil using an immobilized lipase from Candida rugosa in isooctane by Murty VR1, Bhat J, Muniswaran PK.(PubMed)
(350) The use of dual-isotope imaging to compare the gastrointestinal transit of food and pancreatic enzyme pellets in cystic fibrosis patients by Hillel PG1, Tindale WB, Taylor CJ, Frier M, Senior S, Ghosal S.(PubMed)
(351) The Best Digestive Enzymes For Candida(Digestive health Guide)
(352) Purification and characterization of antibacterial substances produced by a marine bacterium Pseudoalteromonas haloplanktis strain by Hayashida-Soiza G1, Uchida A, Mori N, Kuwahara Y, Ishida Y.(PubMed)
(353) Induction of rhythmic transient depolarizations associated with waxing and waning of slow wave activity in intestinal smooth muscle by Pawelka AJ1, Huizinga JD2.(PubMed)
(354) Fermentation Analysis & Evaluation(daily one)
(355) Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production by Säemann MD1, Böhmig GA, Osterreicher CH, Burtscher H, Parolini O, Diakos C, Stöckl J, Hörl WH, Zlabinger GJ.(PubMed)
(356) Inhibition of p38 mitogen-activated protein kinase attenuates butyrate-induced intestinal barrier impairment in a Caco-2 cell monolayer model by Huang XZ1, Li ZR, Zhu LB, Huang HY, Hou LL, Lin J.(PubMed)
(357) Functional characterization of sucrose phosphorylase and scrR, a regulator of sucrose metabolism in Lactobacillus reuteri by Teixeira JS1, Abdi R, Su MS, Schwab C, Gänzle MG.(PubMed)
(358) Fructo-oligosaccharides(FOS)(Wikipedia)

(359) [Synthesis of novel fructo-oligosaccharides (FOS) by enzymatic reaction].[Article in French]by Grizard D1, Barthomeuf C.(PubMed)
(360) Inulin-type prebiotics--a review: part 1 by Kelly G.(PubMed)
(361) Introducing inulin-type fructans by Roberfroid MB1.(PubMed)
(362) Studies with Inulin-Type Fructans on Intestinal Infections, Permeability, and Inflammation,
by Francisco Guarner(The Journal of Nutrition)

No comments:

Post a Comment