Saturday, 17 October 2015

The 2nd edition of The holistic Prevention, Management and Treatment of Dementia under The Microscope of Conventional Medicine - The Phytochemicals Naringenin and Tangeritin

Kyle J. Norton (Scholar)

Health article writer and researcher; Over 10.000 articles and research papers have been written and published on line, including world wide health, ezine articles, article base, healthblogs, selfgrowth, best before it's news, the karate GB daily, etc.,.
Named TOP 50 MEDICAL ESSAYS FOR ARTISTS & AUTHORS TO READ by Named 50 of the best health Tweeters Canada - Huffington Post
Nominated for shorty award over last 4 years
Some articles have been used as references in medical research, such as international journal Pharma and Bio science, ISSN 0975-6299.

Dementia is defined as neuro degeneration syndrome among elder, affecting memory, thinking, orientation, comprehension, calculation, learning capacity, language, and judgement over 47 millions
of worldwide population, mostly in the West. The evaluation of the syndrome by holistic medicine has been lacking, especially through conventional medicine research and studies. The aim of this essay is to provide accurate information of how effective of holistic medicine in prevention, management and treatment of dementia through searching data base of PubMed.
This is the third time, a research paper has been written this way to general public that you will not find any where in the net.

Dementia is a neuropsychiatric disorder induced of cognitive impairment and behavioral disturbances. The behavioral and psychological symptoms of dementia (BPSD) are common, with a progressive loss of memory and other mental abilities, affecting a person's ability to perform usual tasks in everyday life.

Prevention and Management
C. Phytochemicals Against Dementia

C.3. Naringenin
Naringenin, a flavanone, belonging to the red, blue, purple pigments of Flavonoids (polyphenols) found predominantly in citrus fruits is considered as one of powerful antioxidant with many health benefits.
1. Antioxidant, free radical scavenging
Naringin showed to reduce DNA damage through its antioxidant capacities in scavenging free radicals hydroxyl and superoxide(317). Cognitively,naringenin ameliorated Alzheimer's disease (AD)-type neurodegeneration(318) by improving learning and memory ability of patient with early onset of the diseases(319). Pharmacologically, the phytochemical was found to be a potential anticancer, antimutagenic, anti-inflammatory, antiproliferative and antiatherogenic agent(320).

2. Anti-inflammatory effects(320)
Neuroinflammation is considered as a constant event in Alzheimer's disease (AD), with no evidences for its direct involvement in development(322). In diabetic mice model, naringenin exhibited its anti inflammatory activity in lowering blood glucose and urea nitrogen, increasing insulin level and
creatinine clearance(321), probably through inhibition of iNOS protein and anti inflammatory pathways(323).

3. Immunity
Adaptive and innate immune deficit were shown to associate with cognitive dysfunction in patients with AD and mild cognitive impairment (MCI)(325).Naringenin, stimulated the production T cells in regulation of the immune system, and in suppression of allergies and autoimmune diseases(324) which are considered as Alzheimer's and Parkinson's disease variants(326).

C.4. Tangeritin
Tangeritin, one of the flavones, is found in tangerine and many citrus peels.
1. Neuroprotective effects
Natural antioxidant tangeretin, may be used as neuroprotective agent, for its significant effects on protection of striato-nigral integrity and functionality in patients with Parkinson's disease(327), probably through its anti-neuroinflammatory activity(328) via mitochondrial depolarization(329) in attenuated reactive oxygen species generation.

2. Antioxidants
Mature and immature calamondin (Citrus mitis Blanco) peel, containingtangeretin showed to exhibit its antioxidant(331) effects in enhancing the highest oxygen radical absorbance capacity (ORAC) and superoxide scavenging effect(330), as well as ameliorating oxidative stress causes of DNA damage(332), mammary carcinoma(333)(334) and diabetes(335).

Ovarian Cysts And PCOS Elimination
Holistic System In Existence That Will Show You How To
Permanently Eliminate All Types of Ovarian Cysts Within 2 Months

Pregnancy Miracle
Reverse Infertility And Get Pregnant Naturally
Using Holistic Ancient Chinese Medicine

(327) Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson's disease by Datla KP1, Christidou M, Widmer WW, Rooprai HK, Dexter DT.(PubMed)
(328) Tangeretin exerts anti-neuroinflammatory effects via NF-κB modulation in lipopolysaccharide-stimulated microglial cells by Shu Z1, Yang B1, Zhao H2, Xu B1, Jiao W1, Wang Q1, Wang Z1, Kuang H3.(PubMed)
(329) Mild mitochondrial depolarization is involved in a neuroprotective mechanism of Citrus sunki peel extract by Wu JJ1, Cui Y, Yang YS, Jung SC, Hyun JW, Maeng YH, Park DB, Lee SR, Kim SJ, Eun SY.(PubMed)
(330) Antioxidant activity and effective compounds of immature calamondin peel by Yu MW1, Lou SN, Chiu EM, Ho CT.(PubMed)
(331) Polymethoxylated flavones, flavanone glycosides, carotenoids, and antioxidants in different cultivation types of tangerines ( Citrus reticulata Blanco cv. Sainampueng) from Northern Thailand by Stuetz W1, Prapamontol T, Hongsibsong S, Biesalski HK.(PubMed)
(332) Tangeretin ameliorates oxidative stress in the renal tissues of rats with experimental breast cancer induced by 7,12-dimethylbenz[a]anthracene by Lakshmi A1, Subramanian SP2.(PubMed)
(333) Chemotherapeutic effect of tangeretin, a polymethoxylated flavone studied in 7, 12-dimethylbenz(a)anthracene induced mammary carcinoma in experimental rats. by Lakshmi A1, Subramanian S2.(PubMed)
(334) Tangeretin, a citrus pentamethoxyflavone, exerts cytostatic effect via p53/p21 up-regulation and suppresses metastasis in 7,12-dimethylbenz(α)anthracene-induced rat mammary carcinoma by Arivazhagan L1, Sorimuthu Pillai S2.(PubMed)
(335) Effect of tangeretin, a polymethoxylated flavone on glucose metabolism in streptozotocin-induced diabetic rats. by Sundaram R1, Shanthi P2, Sachdanandam P3.(PubMed)
(336) Effects of different drying methods on the antioxidant properties of leaves and tea of ginger specie by E.W.C. Chan, Y.Y. Lim, , S.K. Wong, K.K. Lim, S.P. Tan, F.S. Lianto, M.Y. Yong(Science direct)
(337) Effects of repeated androgen treatments on metabolism and nuclear binding of androgen in the infant murine submandibular gland by Katsukawa H1, Ninomiya Y, Funakoshi M.(PubMed)
(338) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo by Yang F1, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM.(PubMed)
(339) Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology by Frautschy SA1, Hu W, Kim P, Miller SA, Chu T, Harris-White ME, Cole GM.(PubMed)
(340) Structure activity relationship study of curcumin analogues toward the amyloid-beta aggregation inhibitor by Endo H1, Nikaido Y1, Nakadate M1, Ise S1, Konno H2.(PubMed)
(341) Evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation by Satoskar RR, Shah SJ, Shenoy SG.(PubMed)
(342) Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice by Sun J1, Zhao Y, Hu J.(PubMed)
(343) Relevance of the anti-inflammatory properties of curcumin in neurodegenerative diseases and depression by Tizabi Y1, Hurley LL2, Qualls Z3, Akinfiresoye L4.(PubMed)
(344) Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurc™) in the neuronal cell culture and animal model: implications for Alzheimer's disease by Ray B1, Bisht S, Maitra A, Maitra A, Lahiri DK.(PubMed)
(345) Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line by Doggui S1, Sahni JK, Arseneault M, Dao L, Ramassamy C.(PubMed)
(346) The antioxidants curcumin and quercetin inhibit inflammatory processes associated with arthritis by Jackson JK1, Higo T, Hunter WL, Burt HM.(PubMed)
(347) In vitro antidiabetic and inhibitory potential of turmeric (Curcuma longa L) rhizome against cellular and LDL oxidation and angiotensin converting enzyme by Lekshmi PC1, Arimboor R1, Nisha VM1, Menon AN1, Raghu KG1.(PubMed)
(348) Water-soluble antioxidants improve the antioxidant and anticancer activity of low concentrations of curcumin in human leukemia cells by Chen J1, Wanming D, Zhang D, Liu Q, Kang, J.(PubMed)
(349) ROS-dependent prostate apoptosis response-4 (Par-4) up-regulation and ceramide generation are the prime signaling events associated with curcumin-induced autophagic cell death in human malignant glioma by Thayyullathil F1, Rahman A1, Pallichankandy S1, Patel M1, Galadari S2.(PubMed)
(350) Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. by Giordano S1, Darley-Usmar V1, Zhang J2.(PubMed)
(351) Dietary curcumin ameliorates aging-related cerebrovascular dysfunction through the AMPK/uncoupling protein 2 pathway by Pu Y1, Zhang H, Wang P, Zhao Y, Li Q, Wei X, Cui Y, Sun J, Shang Q, Liu D, Zhu Z.(PubMed)
(352) Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington's disease by Sandhir R1, Yadav A, Mehrotra A, Sunkaria A, Singh A, Sharma S.(PubMed)

No comments:

Post a comment