Friday, 17 February 2017

The holistic Prevention, Management and Treatment of Dementia due to Spleen Qi deficiency - TCM Herbal Cinnamon bark (Rou gui)

Kyle J. Norton (Scholar) 
Health article writer and researcher; Over 10.000 articles and research papers have been written and published on line, including world wide health, ezine articles, article base, healthblogs, selfgrowth, best before it's news, the karate GB daily, etc.,.
Named TOP 50 MEDICAL ESSAYS FOR ARTISTS & AUTHORS TO READ by Named 50 of the best health Tweeters Canada - Huffington Post
Nominated for shorty award over last 4 years
Some articles have been used as references in medical research, such as international journal Pharma and Bio science, ISSN 0975-6299.


Dementia is defined as neuro degeneration syndrome among elder, affecting memory, thinking, orientation, comprehension, calculation, learning capacity, language, and judgement over 47 millions
of worldwide population, mostly in the West. The evaluation of the syndrome by holistic medicine has been lacking, especially through conventional medicine research and studies.

   TCM Treatment of Dementia Induced by Spleen Qi deficiency - TCM Herbal Cinnamon bark (Rou gui)

Based on Chinese ancient medical records, causes of dementia are the results of (*)
B.1. Deficiency of Qi, mainly due to
B.3.3. Spleen Qi deficiency
Spleen is a vital organ, according to traditional Chinese medicine, with function in absoring nutrients and transporting them to body's organs and cells. Spleen Qi deficiency is a condition of the inability of the spleen in maximized transportation of nutrients to body organs, including the brain. Prolong period of malnutrition of brain cells may induce abnormal functions in information transmitting or death of neurons, causing cognitive impairment(844), including learning and memory deficits(842) and changes in brain tissues and behavior patterns(843)(842).

4. Cinnamon bark (Rou gui)
Rou gui, an acrid, sweet, very hot herb, is also known as Cinnamon bark, used in TCM as anti-spasmodic(1110), antibiotic(1111), antigastric ulcers(1112), anti impotent and anti diabetic(1113)(1114) agents and to treat hepatitis(1115), flatulence(1116), weak digestion(1116), pain in solar plexus(1110), breast cancer(1117)(1118), tuberculosis(1119)(1120), etc., as it drains the liver heat, eliminates Qi accumulation, disperses nodules, reduces stagnation, enhancing the functions of heart, lung, bladder channels(1121).

1. Cinnamic aldehyde
2. Cinnamyl acetate
3. Eugenol
4. Aldehyde
5. Pinene
6. Coumarin
7. Cinnamyl alcohol
8. Cinnamic acid
9. Cinnzeylanol
10. Cinnzeylanine
11. Etc.

Cinnamon bark (Rou gui) used in the treatment of symptoms of neurological impairment(1108)(1109) in traditional Chinese medicine, may be due to its effectiveness of phytochemicals, including major constituent cinnamaldehyde (CA) and epicatechin (EC)(1122) in exertion of its neuroprotective effects(1123)(1123), through anti oxidative stress(1125), anti inflammatory(1124)) activities, against β-amyloid (Aβ) accumulation(1126) induced neurotoxicity causes of Alzheimer's disease.(1126)(1127) and neurodegeneration(1128).

4.1. In Alzheimer's disease
Cinnamon, a multifaceted medicinal plant have shown to consist activities against neurological disorders, including Alzheimer's diseases(1129) by blocking and reversing tau modification and aggregation(1131)(1130) and ischemic stroke induced cell swelling(1130). In β-amyloid polypeptide (Aβ), associated to the development of Alzheimer's disease(AD) mouses model, oral administration of cinnamon extract exhibited neuroroprotective effects in enhancing the fully recover of locomotion defects and totally abolished tetrameric species of Aβ in their brain(1132). In a high fat/high fructose diet induced Alzheimer's disease(AD) symptoms, cinnamon (CN) ameliorated enzyme phosphatase and proteins tensin homolog (PTEN), tau and amyloid precursor, associated to Alzheimer's disease(AD), through improved insulin sensitivity and related changes in the brain(1133).
According to The Business and Technology Center, West Lafayette, Chinesecinnamon, is one of the tested herb with potential for prevention and treatment of early onset of Alzheimer's disease(AD)(1134).

4.2. In Parkinson's disease
In a mice model, oral administration of cinnamon (Cinnamonum verum) powder upregulaed and/or maintained the level of Parkin/DJ-1, a beneficial proteins associated to degeneration progression of Parkinson's disease(1135). through protection of dopaminergic neurons(1136). In oligomeriztion of α-synuclein (α-syn) formation associated with the symptoms of Parkinson's Disease, cinnamon extract precipitation (CEppt), inhibited oligomeric and fibrillar forms of α-syn through ameliorated aggregation of β-amyloid polypeptide(1137).

4.3. In neuroprotective effects
Oxidative stress has shown to associate to brain damage due to its high consumption of oxygen.
Cinnamon polyphenols, during oxidative stress, exhibited neuroprotective effects in glial cells by reduced overexpression of the proinflammatory factors(1138) and enhanced prosurvival proteins protein levels (sirtuin 1, 2, and 3, deacetylases) associated to glioma cells survival(1139). Cinnamaldehyde, a major chemical found in cinnamon, inhibited uncontrolled activation of microglia contributing to neuroinflammation involved in the development of neurodegenerative diseases(1140). The herbal water extract, also exerted neuro protective effect against glutamate-induced neuronal death through the inhibition of Ca(2+) influx(1141).

Ovarian Cysts And PCOS Elimination
Holistic System In Existence That Will Show You How To
Permanently Eliminate All Types of Ovarian Cysts Within 2 Months

Pregnancy Miracle
Reverse Infertility And Get Pregnant Naturally
Using Holistic Ancient Chinese Medicine

(842) Folate deficiency in rat pups during weaning causes learning and memory deficits. by Berrocal-Zaragoza MI1, Sequeira JM1, Murphy MM2, Fernandez-Ballart JD2, Abdel Baki SG3, Bergold PJ3, Quadros EV1.(PubMed)
(843) Changes in brain tissue and behavior patterns induced by single short-term fasting in mice. by Hisatomi Y1, Asakura K, Kugino K, Kurokawa M, Asakura T, Nakata K.(PubMed)
(844) Combined low calcium and lack magnesium is a risk factor for motor deficit in mice. by Taniguchi R1, Nakagawasai O, Tan-no K, Yamadera F, Nemoto W, Sato S, Yaoita F, Tadano T.(PubMed)

(1010) The protective effect of peony extract on acute myocardial infarction in rats by Mo X1, Zhao N, Du X, Bai L, Liu J.(PubMed)
(1011) Paeoniflorin protects against concanavalin A-induced hepatitis in mice. by Chen M1, Cao L2, Luo Y3, Feng X4, Sun L5, Wen M6, Peng S7.(PubMed)
(1012) [Treatment of irritable bowel syndrome by Chinese medicine and pharmacy: an analysis of data mining on experiences of experts].[Article in Chinese] by Zhang BH1, Gao R, Li ZH, Li BS, Wang FY, Tang XD.(PubMed)
(1013) Antioxidant and anti-inflammatory effects of Schisandra and Paeonia extracts in the treatment of asthma by Chen X1, Huang Y1, Feng J1, Jiang XF1, Xiao WF1, Chen XX1.(PubMed)
(1014) The effect of a traditional Chinese prescription for a case of lung carcinoma by Kamei T1, Kumano H, Iwata K, Nariai Y, Matsumoto T.(PubMed)
(1015) [Effect of a peony root preparation on the status of the insulin and hemostatic system in animals during development of alloxan diabetes].[Article in Russian] by Ul'ianov AM, Tarasov IuA, Liapina LA, Pastorova VE, Uspenskaia MS.(PubMed)
(1016) Immunomodulatory and Antidiabetic Effects of a New Herbal Preparation (HemoHIM) on Streptozotocin-Induced Diabetic Mice by Kim JJ1, Choi J1, Lee MK2, Kang KY3, Paik MJ3, Jo SK4, Jung U4, Park HR4, Yee ST5.(PubMed)
(1017) Shao Yao(Complementary and Alternative Healing University)
(1018) Comparative pharmacokinetics of paeoniflorin in plasma of vascular dementia and normal rats orally administrated with Danggui-Shaoyao-San or pure paeoniflorin by Liu J1, Wang JS, Kong LY.(PubMed)
(1019) A traditional medicinal herb Paeonia suffruticosa and its active constituent 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose have potent anti-aggregation effects on Alzheimer's amyloid beta proteins in vitro and in vivo by Fujiwara H1, Tabuchi M, Yamaguchi T, Iwasaki K, Furukawa K, Sekiguchi K, Ikarashi Y, Kudo Y, Higuchi M, Saido TC, Maeda S, Takashima A, Hara M,Yaegashi N, Kase Y, Arai H.(PubMed)
(1020) Neuroprotective effect of paeoniflorin on cerebral ischemic rat by activating adenosine A1 receptor in a manner different from its classical agonists by Liu DZ1, Xie KQ, Ji XQ, Ye Y, Jiang CL, Zhu XZ.(PubMed)
(1021) Neuroprotective effects of paeoniflorin, but not the isomer albiflorin, are associated with the suppression of intracellular calcium and calcium/calmodulin protein kinase II in PC12 cells by Wang D1, Tan QR, Zhang ZJ.(PubMed)
(1022) Paeoniflorin inhibition of 6-hydroxydopamine-induced apoptosis in PC12 cells via suppressing reactive oxygen species-mediated PKCδ/NF-κB Dong H1, Li R2, Yu C1, Xu T1, Zhang X1, Dong M3.(PubMed)
(1023) Paeonol attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling by Liu MH1, Lin AH1, Lee HF2, Ko HK3, Lee TS1, Kou YR1.(PubMed)
(1024) [Advance in studies on effect of paeoniflorin on nervous system].[Article in Chinese] by Hu ZY1, Xu L, Yan R, Huang Y, Liu G, Zhou WX, Zhang YX.(PubMed)
(1025) Paeonol increases levels of cortical cytochrome oxidase and vascular actin and improves behavior in a rat model of Alzheimer's disease by Zhou J1, Zhou L, Hou D, Tang J, Sun J, Bondy SC.(PubMed)
(1026) Paeoniflorin attenuates learning impairment of aged rats in operant brightness discrimination task by Ohta H1, Matsumoto K, Shimizu M, Watanabe H.(PubMed)
(1027) [Effects of total paeony glucosides on mRNA expressions of Toll receptors and interleukin-33 in the brain tissue of D-galactose induced aging rats: an experimental research].[Article in Chinese] by Zhang HY1, Liu ZJ, Chen ZW.(PubMed)
(1028) [Advance in studies on effect of paeoniflorin on nervous system].[Article in Chinese] by Hu ZY1, Xu L, Yan R, Huang Y, Liu G, Zhou WX, Zhang YX.(PubMed)
(1028a) Neuroprotective effect of paeoniflorin on cerebral ischemic rat by activating adenosine A1 receptor in a manner different from its classical agonists by Liu DZ1, Xie KQ, Ji XQ, Ye Y, Jiang CL, Zhu XZ.(PubMed)
(1029) Mechanism of 6-hydroxydopamine neurotoxicity by Glinka Y1, Gassen M, Youdim MB.(PubMed)
(1030) Paeoniflorin inhibition of 6-hydroxydopamine-induced apoptosis in PC12 cells via suppressing reactive oxygen species-mediated PKCδ/NF-κB pathway by Dong H1, Li R2, Yu C1, Xu T1, Zhang X1, Dong M3.(PubMed)
(1031) Effects of the root bark of Paeonia suffruticosa on mitochondria-mediated neuroprotection in an MPTP-induced model of Parkinson's disease by Kim HG1, Park G2, Piao Y3, Kang MS4, Pak YK3, Hong SP1, Oh MS5.(PubMed)
(1032) Protective effect of paeoniflorin against glutamate-induced neurotoxicity in PC12 cells via Bcl-2/Bax signal pathway by Sun R1, Wang K, Wu D, Li X, Ou Y.(PubMed)
(1033) Polyphenols and neuroprotection against ischemia and neurodegeneration. by Lin B1.(PubMed)
(1034) Apolipoprotein E and Alzheimer disease: risk, mechanisms, and therapy by Chia-Chen Liu,1 Takahisa Kanekiyo,2 Huaxi Xu,1 and Guojun Bu1(PMC)
(1035) Increased A beta 42(43)-plaque deposition in early-onset familial Alzheimer's disease brains with the deletion of exon 9 and the missense point mutation (H163R) in the PS-1 gene by Ishii K1, Ii K, Hasegawa T, Shoji S, Doi A, Mori H.(PubMed)
(1036) Abeta-42 deposition precedes other changes in PS-1 Alzheimer's disease by Lippa CF, Nee LE, Mori H, St George-Hyslop P.(PubMed)
(1037) Peoniflorin attentuates Abeta((1-42))-mediated neurotoxicity by regulating calcium homeostasis and ameliorating oxidative stress in hippocampus of rats by Zhong SZ1, Ge QH, Li Q, Qu R, Ma SP.(PubMed)
(1038) A review of cognitive impairments in dementia with Lewy bodies relative to Alzheimer's disease and Parkinson's disease with dementia by Metzler-Baddeley C1.(PubMed)
(1039) Paeoniflorin attenuates amyloid-beta peptide-induced neurotoxicity by ameliorating oxidative stress and regulating the NGF-mediated signaling in rats. by Lan Z1, Chen L2, Fu Q1, Ji W1, Wang S1, Liang Z1, Qu R3, Kong L4, Ma S5.(PubMed)
(1040) Paeoniflorin attenuates chronic cerebral hypoperfusion-induced learning dysfunction and brain damage in rats by Liu J1, Jin DZ, Xiao L, Zhu XZ.(PubMed)
(1041) Effects of paeoniflorin on the cerebral infarction, behavioral and cognitive impairments at the chronic stage of transient middle cerebral artery occlusion in rats by Xiao L1, Wang YZ, Liu J, Luo XT, Ye Y, Zhu XZ.(PubMed)

No comments:

Post a comment