Wednesday, 8 April 2015

The Holistic prevention, management and treatment of Polycystic Ovarian Syndrome: The Immunity Boosting Minerals


Weight Loss the Easy Ways
Andrea Albright Featured on Health and Fitness Jan. 2015
will Personally Coach You How to Get There The Easy Way

If You Are Looking For a SoulMate
Celebrity Patti Stanger Will Coach You To Get Him/Her
and Keep Him/Her for Good,The Simple Way

By Kyle J. Norton Health article writer and researcher; Over 10.000 articles and research papers have been written and published on line, including world wide health, ezine articles, article base, healthblogs, selfgrowth, best before it's news, the karate GB daily, etc.,.
Named TOP 50 MEDICAL ESSAYS FOR ARTISTS & AUTHORS TO READ by Disilgold.com Named 50 of the best health Tweeters Canada - Huffington Post
Nominated for shorty award over last 4 years
Some articles have been used as references in medical research, such as international journal Pharma and Bio science, ISSN 0975-6299.


                                         Polycystic Ovarian Syndrome


Polycystic Ovarian Syndrome is defined as endocrinologic diseases among reproductive-age women caused by undeveloped follicles clumping on the ovaries that interferes with the function of the normal ovaries associated with a high risk for metabolic disorder(1) as resulting of enlarged ovaries(2), leading to hormone imbalance(excessive androgen and anti-müllerian hormone (AMH) )(1)(3)(4)(5), induced Hirsutism(6)(7), reproductive disorder(10(12)), risks of type 2 diabetes(9)(10)(11), metabolic syndrome(10)(12) and early cardiovasular disease(8)(13), acne(10)(14), endometrial cance(18)(19),weight gain and obesity(15)(16)(17). The syndrome effects over 5% of women population or 1 in 20 women.
Unfortunately, according to studies, women with PCOs after the reproductive age, are associated to  continuously increase risk of type II diabetes, with no increasing altered glucose tolerance(20), CVD and hypertension(21).



                        The prevention and management 

Polycystic ovary syndrome (PCOS) is unpreventable in Western medicine. Early diagnosis and treatment  may reduce risk of its complications, including infertility, metabolic syndrome, obesity, diabetes, cardiovascular diseases, stroke, etc.

Although PCOS cannot be completely avoided, strengthening immunity has shown a significant reduction of chronic inflammatory diseases(266)(267)(268).


                                   The Immunity Boosting Minerals

Recent studies showed that deficiencies of zinc, iron, copper, and selenium lower resistance to disease either due to impaired immune response or faulty white blood cells' function(421)
1. Magnesium
The mineral, magnesium plays a key role in the immune response, by acting as a co-factor for immunoglobulin synthesis(422) that significantly increases for both IgA and IgG, the antibody molecules that protect our body against bacterial and viral infections(423) and the lining of the respiratory passages, gastrointestinal and genitourinary tract(423).
The mineral also found to increase neutrophil function and enzyme peroxidase activity and reduce the incidence of health disorders by boosting immunity(424), including chronic inflammatory disease(425)(426). Low serum magnesium (Mg) is often associated with  incidences of insulin resistance (IR), cardiovascular problems, diabetes mellitus, hypertension and other components of metabolic syndrome(428) in patients with polycystic ovary syndrome (PCOS)(427).

2. Selenium
Selenium, a trace mineral plays an important and indirect role as an antioxidant(429)(430) by fulfilling its function as a necessary constituent of glutathione peroxidase(431)(432) and in production of glutathione(432), that inhibits the damage caused by oxidation of free radical hydrogen peroxide(433).
Extensively epidemiological studies suggested that selenium also benefits to health aspects, including anti cancers(434)(435), lowering cholesterol(436)(438), hypertension(439)(440), treating heart disease(427)(438), boosting immunity(441)(442) against microbial invasion(443)(444) and anti chronic inflammatory disease(445)(446).

3. Zinc
Zinc besides is an important mineral in boosting immune system activity(447)(449). Its nano-structure zinc(II) coordination compounds, has been used in zinc therapy to treat candida overgrowth(449) by promoting metallothionein (MT)(found in high concentration in intestinal mucosa)synthesis(450) through its anti inflammatory activity(451), including chronic inflammation(453)(454) via immune modulatory effects(452)(453)(454).

4. Manganese
Manganese is an essential trace nutrient in all forms of life. It is well known for its role in helping the body to maintain healthy skin(455)(456) and bone structure(457)(458), but also acts as cofactors for a number of enzymes(459) in higher organisms, where they are essential in iexhibting its antioxidant effects against free radicals(450)(451). Recent studies suggested that manganese also benefits in controlling bood glucose(452)(453), alleviating neuro symptoms such as anxiety, and depression(454) and treatment of high cholesterol levels(456), hypertension(455), infertility(457), cardiomyopathy(458), reduced oxidative stress, amyloid deposition, and memory(459) and boosting immune system anti microbial infections and inflammation(460).
In larger amounts, manganese can be poisoning to neurological damage(451)(462).

5. Iron
A mineral plays a vital role for production of hemoglobin(463)(464)utilised by the body for oxygen transport and energy production(467), for maintaining healthy bones(465) and neurotransmission(466), synthesizing of some hormones and connective tissue(467)(468)(469) and maintaining heart health(470). Deficiency of iron causes low level of hemoglobin, nervous tension((473)(474)), cognitive dysfunction(471)(476), heart disorders(472)(475), heavy menstrual bleeding(479)(480), iron deficiency anemia, etc.,.. Recent studies suggested that trace mineral iron improves immunity(481)(482) fighting against  microbial infection(481) and inflammatory disease(483)(484), including certain types of chronic inflammatory diseases(486)(485) due to low levels of hemoglobin impaired cell-mediated immune response and bacterial activity of leukocytes(421).

3. Copper
Copper is vital in maintaining the production of antibodies(487)(488), white blood cells(489)(490), antioxidant enzymes(491)(492), for increasing the immune function in fighting against infection(487)(488) and inflammation(493)(494), including certain chronic inflammatory diseases(495)(496). The mineral also acts as a modulator of neuronal transmission(497), regulates production of certain hormones(498). Deficiency of copper may cause metabolic liver disease(502), copper deficiency anemia(503),....Deficiency and excess of copper levels can induce infertile(499), low libido and sexual issues(500), low quality sperm production(499)(500), disrupted nervous function(501), etc.,...





Ovarian Cysts And PCOS Elimination
Holistic System In Existence That Will Show You How To
Permanently Eliminate All Types of Ovarian Cysts Within 2 Months   

 
References
(1) Adiposity and metabolic dysfunction in polycystic ovary syndrome by Sam S.(PubMed)
(2) A "kiss" before conception: triggering ovulation with kisspeptin-54 may improve IVF by Young SL.(PubMed)
(3.) Androgen hyperfunction and excessive heterosexual hair growth in women, with special attention to the polycystic ovarian syndrome by Lunde O1.(PubMed)
(4) Expression of anti-Müllerian hormone in letrozole rat model of polycystic ovary syndrome by Du DF1, Li XL, Fang F, Du MR.(PubMed)
(5) [Serum levels of anti-muller hormone in women with polycystic ovary syndrome and healthy women of reproductive age].[Article in Bulgarian] by Parahuleva N, Pehlivanov B, Orbecova M, Deneva T, Uchikova E.(PubMed)
(6) [Current opinions on the etiology and pathophysiology of hirsutism].[Article in Polish] by Krysiak R1, Kedzia A, Okopień B.(PubMed)
(7) The clinical evaluation of hirsutism by Somani N1, Harrison S, Bergfeld WF.(PubMed)
(8) Polycystic ovary syndrome and insulin: our understanding in the past, present and future by Mayer SB1, Evans WS, Nestler JE.(PubMed)
(9) Association of mean platelet volume with androgens and insulin resistance in nonobese patients with polycystic ovary syndrome by Dogan BA1, Arduc A2, Tuna MM1, Karakılıc E1, Dagdelen I1, Tutuncu Y1, Berker D1, Guler S1.(PubMed)
(10) Approach to the patient: contraception in women with polycystic ovary syndrome by Yildiz BO1.(PubMed)
(11) Polycystic ovarian syndrome (PCOS): a significant contributor to the overall burden of type 2 diabetes in women by Talbott EO1, Zborowski JV, Rager JR, Kip KE, Xu X, Orchard TJ.(PubMed)
(12) Prevalence of vitamin D deficiency in Slovak women with polycystic ovary syndrome and its relation to metabolic and reproductive abnormalities by Figurová J1, Dravecká I, Javorský M, Petríková J, Lazúrová I.(PubMed)
(13) Role of Insulin Sensitizers on Cardiovascular Risk Factors in Polycystic Ovarian Syndrome: A Meta-Analysis by Thethi TK1, Katalenich B2, Nagireddy P3, Chabbra P4, Kuhadiya N5, Fonseca V1.(PubMed)
(14) Acne in hirsute women by Lumezi BG1, Pupovci HL1, Berisha VL1, Goçi AU2, Gerqari A3.(PubMed)
(15) Obesity and polycystic ovary syndrome by Naderpoor N1, Shorakae S, Joham A, Boyle J, De Courten B, Teede HJ.(PubMed)
(16) Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan by Teede H1, Deeks A, Moran L.(PubMed)
(17) Metabolic Evidence of Diminished Lipid Oxidation in Women With Polycystic Ovary Syndrome. by Whigham LD1, Butz DE2, Dashti H3, Tonelli M3, Johnson LK1, Cook ME2, Porter WP4, Eghbalnia HR5, Markley JL6, Lindheim SR7, Schoeller DA8, Abbott DH9, Assadi-Porter FM10.(PubMed)
(18) Risk of endometrial, ovarian and breast cancer in women with polycystic ovary syndrome: a systematic review and meta-analysis by Barry JA1, Azizia MM1, Hardiman PJ2.(PubMed)
(19) Risk of cancer among women with polycystic ovary syndrome: a Danish cohort study by Gottschau M1, Kjaer SK2, Jensen A1, Munk C1, Mellemkjaer L3.(PubMed)
(20) Polycystic ovary syndrome: metabolic consequences and long-term management by Carmina E1.(PubMed)
(21) Arterial stiffness is increased in asymptomatic nondiabetic postmenopausal women with a polycystic ovary syndrome phenotype by Armeni E1, Stamatelopoulos K, Rizos D, Georgiopoulos G, Kazani M, Kazani A, Kolyviras A, Stellos K, Panoulis K, Alexandrou A, Creatsa M, Papamichael C, Lambrinoudaki I.(PubMed)
(266) [Immunopathological responses in women with chronic inflammatory diseases of the uterus and appendages and their therapeutic correction].[Article in Russian] by Medvedev BI1, Kazachkova EA, Kazachkov EL.(PubMed)
(267) Cross Talk Between ER Stress, Oxidative Stress, and Inflammation in Health and Disease by Dandekar A1, Mendez R, Zhang K.(PubMed)
(268) New dog and new tricks: evolving roles for IL-33 in type 2 immunity by Lott JM1, Sumpter TL1, Turnquist HR2.(PubMed)
(421) Trace Minerals and ImmunologyRichard C. Bull, Professor of Animal Sciences, University of Idaho
(422) Study of possible correlation between BLOOD IMMUNOGLOBULIN G INCREASED and MAGNESIUM CITRATE(Meds fact)
(423 )In vitro antiviral and antibacterial activity of commercial intravenous immunoglobulin preparations--a potential role for adjuvant intravenous immunoglobulin therapy in infectious diseases by  Krause I1, Wu R, Sherer Y, Patanik M, Peter JB, Shoenfeld Y.(PubMed)
(424) Effect of an injectable trace mineral supplement containing selenium, copper, zinc, and manganese on immunity, health, and growth of dairy calves by Teixeira AG1, Lima FS1, Bicalho ML1, Kussler A1, Lima SF1, Felippe MJ1, Bicalho RC2.(PubMed)
(425) Effects of magnesium depletion on inflammation in chronic disease by Nielsen FH1.(PubMed)
(426) Magnesium, inflammation, and obesity in chronic disease by Nielsen FH1.(PubMed)
(427) Serum magnesium concentrations in polycystic ovary syndrome and its association with insulin resistance by Sharifi F1, Mazloomi S, Hajihosseini R, Mazloomzadeh S.(PubMed)
(428) Serum magnesium concentrations and metabolic variables in polycystic ovary syndrome by Kauffman RP1, Tullar PE, Nipp RD, Castracane VD.(PubMed)
(429) Low zinc and selenium concentrations in sepsis are associated with oxidative damage and inflammation by Mertens K1, Lowes DA1, Webster NR1, Talib J2, Hall L2, Davies MJ3, Beattie JH4, Galley HF5.(PubMed)
(430) Serum selenium concentration and antioxidant activity in cervical cancer patients before and after treatment by Subramanyam D1, Subbaiah KV, Rajendra W, Lokanatha V.(PubMed)
(431) Selenium regulation of glutathione peroxidase in human hepatoma cell line Hep3B by Baker RD1, Baker SS, LaRosa K, Whitney C, Newburger PE.(PubMed)
(432) Selenium: biochemical role as a component of glutathione peroxidase by Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG.(PubMed)
(433) Selenium suppressed hydrogen peroxide-induced vascular smooth muscle cells calcification through inhibiting oxidative stress and ERK activation by Liu H1, Lu Q, Huang K.(PubMed)
(434) Associations of obesity with prostate cancer risk differ between u.s. African-american and non-Hispanic white men: results from the selenium and vitamin e cancer prevention trial by Barrington WE, Schenk JM, Etzioni R, Arnold KB, Neuhouser ML, Thompson IM, Lucia MS, Kristal AR.(PubMed)
(435) Selenium for preventing cancer by Vinceti M1, Dennert G, Crespi CM, Zwahlen M, Brinkman M, Zeegers MP, Horneber M, D'Amico R, Del Giovane C.(PubMed)
(436) The association between selenium and lipid levels: a longitudinal study in rural elderly Chinese by Chen C1, Jin Y1, Unverzagt FW2, Cheng Y1, Hake AM3, Liang C1, Ma F1, Su L1, Liu J1, Bian J4, Li P5, Gao S6.(PubMed)
(437) Associations of selenium status with cardiometabolic risk factors: an 8-year follow-up analysis of the Olivetti Heart study by Stranges S1, Galletti F, Farinaro E, D'Elia L, Russo O, Iacone R, Capasso C, Carginale V, De Luca V, Della Valle E, Cappuccio FP, Strazzullo P.(PubMed)
(438) Selenium status and blood lipids: the cardiovascular risk in Young Finns study by Stranges S1, Tabák AG, Guallar E, Rayman MP, Akbaraly TN, Laclaustra M, Alfthan G, Mussalo-Rauhamaa H, Viikari JS, Raitakari OT, Kivimäki M.(PubMed)
(439) Influence of serum selenium concentrations on hypertension: the Lipid Analytic Cologne cross-sectional study by Berthold HK1, Michalke B, Krone W, Guallar E, Gouni-Berthold I(PubMed)
(440) Serum selenium concentrations and hypertension in the US Population by Laclaustra M1, Navas-Acien A, Stranges S, Ordovas JM, Guallar E.(PubMed)
(441) The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities by Huang Z1, Rose AH, Hoffmann PR.(PubMed)
(442) The influence of selenium on immune responses by Hoffmann PR1, Berry MJ.(PuMed)
(443) Selenium containing heterocycles: synthesis, anti-inflammatory, analgesic and anti-microbial activities of some new 4-cyanopyridazine-3(2H)selenone derivatives by Abdel-Hafez ShH1.(PubMed)
(444) Antimicrobial selenium nanoparticle coatings on polymeric medical devices by Tran PA1, Webster TJ.(PubMed)
(445) Selenium and selenoproteins in inflammatory bowel diseases and experimental colitis by Speckmann B1, Steinbrenner H.(PubMed)
(446) Selenium, selenoproteins and human health: a review by Brown KM1, Arthur JR.(PubMed)
(447) Zinc and the immune system by Rink L1, Gabriel P.(PubMed)
(448) The immune system and the impact of zinc during aging by Haase H1, Rink L.(PubMed)
(449) Some new nano-structure zinc(II) coordination compounds of an imidazolidine Schiff base: spectral, thermal, antimicrobial properties and DNA interaction. Montazerozohori M1, Musavi SA2, Naghiha A3, Zohour MM4.(PubMed)
(450) Candida article zinc and metallothionein(Cure zone)
(451) Metallothionein as an Anti-Inflammatory Mediator(Mediators of inflammation
(452) Zinc and its role in immunity and inflammation by Bonaventura P1, Benedetti G1, Albarède F2, Miossec P3.(PubMed)
(453) Zinc: role in immunity, oxidative stress and chronic inflammation by Prasad AS1(PubMed)
(454) Zinc transporter SLC39A10/ZIP10 controls humoral immunity by modulating B-cell receptor signal strength by Hojyo S1, Miyai T2, Fujishiro H3, Kawamura M4, Yasuda T5, Hijikata A6, Bin BH7, Irié T8, Tanaka J8, Atsumi T9, Murakami M9, Nakayama M10, Ohara O11, Himeno S3, Yoshida H5, Koseki H12, Ikawa T13, Mishima K8, Fukada T14(PubMed)
(455) Frequency of autoallergy to manganese superoxide dismutase in atopic dermatitis patients: experience of three Italian dermatology centers by Guarneri F1, Costa C, Foti C, Hansel K, Guarneri C, Guarneri B, Lisi P, Stingeni L.(PubMed)
(456) IgE-mediated and T cell-mediated autoimmunity against manganese superoxide dismutase in atopic dermatitis by Schmid-Grendelmeier P1, Flückiger S, Disch R, Trautmann A, Wüthrich B, Blaser K, Scheynius A, Crameri R.(PubMed)
(457) Manganese accumulation in bone following chronic exposure in rats: steady-state concentration and half-life in bone by O'Neal SL1, Hong L1, Fu S1, Jiang W1, Jones A1, Nie LH1, Zheng W2.(PubMed)
(458) A compact DD neutron generator-based NAA system to quantify manganese (Mn) in bone in vivo by Liu Y1, Byrne P, Wang H, Koltick D, Zheng W, Nie LH.(PubMed)
(459) Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation by Brown DA, Cook RA.(PubMed)
(450) Antioxidants and NOS inhibitors selectively targets manganese-induced cell volume via Na-K-Cl cotransporter-1 in astrocytes by Alahmari KA1, Harini P2, Prabhakaran K3, Chandramoorthy HC4, Ramakrishnan R5.(PubMed)
(451) Antioxidant effect of manganese by Coassin M1, Ursini F, Bindoli A.(PubMed)
(452) Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion by Lee SH1, Jouihan HA, Cooksey RC, Jones D, Kim HJ, Winge DR, McClain DA.(PubMed)
(453) Manganese-Mediated MRI Signals Correlate With Functional β-Cell Mass During Diabetes Progression by Meyer A1, Stolz K1, Dreher W2, Bergemann J1, Holebasavanahalli Thimmashetty V2, Lueschen N1, Azizi Z1, Khobragade V1, Maedler K3, Kuestermann E2.(PubMed)
(454) Essential elements in depression and anxiety. Part II by Młyniec K1, Gaweł M2, Doboszewska U3, Starowicz G4, Pytka K5, Davies CL6, Budziszewska B7.(PubMed)
(455) Effect of antioxidant mineral elements supplementation in the treatment of hypertension in albino rats by Muhammad SA1, Bilbis LS, Saidu Y, Adamu Y.(PubMed)
(456) Manganese supplementation reduces the blood cholesterol levels in Ca-deficient ovariectomized rats by Bae YJ1, Choi MK, Kim MH.(PubMed)
(457) BOVINE INFERTILITY--RESPONSE TO MANGANESE THERAPY by WILSON JG.(PubMed)
(458)Pharmaceutical effect of manganese porphyrins on manganese superoxide dismutase deficient mice by Hayakawa N1, Asayama S, Noda Y, Shimizu T, Kawakami H.(PubMed)
(459) Reduction of oxidative stress, amyloid deposition, and memory deficit by manganese superoxide dismutase overexpression in a transgenic mouse model of Alzheimer's disease by Dumont M1, Wille E, Stack C, Calingasan NY, Beal MF, Lin MT.(PubMed)
(460) Nutritional immunity beyond iron: a role for manganese and zinc by Kehl-Fie TE1, Skaar EP.(PubMed)
(461) Genetic factors and manganese-induced neurotoxicity. by Chen P1, Parmalee N1, Aschner M1.(PubMed)
(462) Manganese neurotoxicity: a focus on glutamate transporters by Karki P, Lee E, Aschner M1.(PubMed)
(463) HEMOGLOBIN PRODUCTION IN ANEMIA LIMITED BY LOW PROTEIN INTAKE : INFLUENCE OF IRON INTAKE, PROTEIN SUPPLEMENTS AND FASTING by Hahn PF1, Whipple GH.(PubMed)
(464) Effect of iron deficiency anemia on the levels of hemoglobin A1c in nondiabetic patients by Coban E1, Ozdogan M, Timuragaoglu A.(PubMed)
(465) Low serum levels of zinc, copper, and iron as risk factors for osteoporosis: a meta-analysis by Zheng J1, Mao X, Ling J, He Q, Quan J.(PubMed)
(466) Brain iron deficiency and excess; cognitive impairment and neurodegeneration with involvement of striatum and hippocampus by Youdim MB1.(PubMed)
(467) Athletic induced iron deficiency: new insights into the role of inflammation, cytokines and hormones by Peeling P1, Dawson B, Goodman C, Landers G, Trinder D.(PubMed)
(468) Aggett PJ. Iron. In: Erdman JW, Macdonald IA, Zeisel SH, eds. Present Knowledge in Nutrition. 10th ed. Washington, DC: Wiley-Blackwell; 2012:506-20.
(469) Murray-Kolbe LE, Beard J. Iron. In: Coates PM, Betz JM, Blackman MR, et al., eds. Encyclopedia of Dietary Supplements. 2nd ed. London and New York: Informa Healthcare; 2010:432-8.
(470) Cardiac ferroportin regulates cellular iron homeostasis and is important for cardiac function by Lakhal-Littleton S1, Wolna M2, Carr CA2, Miller JJ2, Christian HC2, Ball V2, Santos A3, Diaz R3, Biggs D3, Stillion R4, Holdship P5, Larner F5, Tyler DJ2, Clarke K2, Davies B3, Robbins PA2.(PubMed)
(471) Effect of dietary iron loading on recognition memory in growing rats by Han M1, Kim J1.(PubMed)
(472) [Anaemia and iron deficiency in clinical practice:from cardiology to gastroenterology and beyond].
[Article in Czech] by Češka R.(PubMed)
(473) Iron and mechanisms of emotional behavior by Kim J1, Wessling-Resnick M2.(PubMed)
(474) Essential elements in depression and anxiety. Part I by Młyniec K1, Davies CL2, de Agüero Sánchez IG3, Pytka K4, Budziszewska B5, Nowak G6.(PubMed)
(475) Iron deficiency: an emerging therapeutic target in heart failure by Cohen-Solal A1, Leclercq C2, Deray G3, Lasocki S4, Zambrowski JJ5, Mebazaa A6, de Groote P7, Damy T8, Galinier M9.(PubMed)
(476) Effect of iron-deficiency anemia on cognitive skills and neuromaturation in infancy and childhood by Walter T1.(PubMed)
 (479) Effects of anemia and iron deficiency on quality of life in women with heavy menstrual bleeding by Peuranpää P1, Heliövaara-Peippo S, Fraser I, Paavonen J, Hurskainen R.(PubMed)
(480) Iron deficiency and fatigue in adolescent females with heavy menstrual bleeding by Wang W1, Bourgeois T, Klima J, Berlan ED, Fischer AN, O'Brien SH.(PubMed)
(481) Iron at the interface of immunity and infection by Nairz M1, Haschka D1, Demetz E1, Weiss G1.(PubMed)
(482) Impact of iron deficiency anemia on cell-mediated and humoral immunity in children: A case control study by Das I1, Saha K1, Mukhopadhyay D2, Roy S1, Raychaudhuri G3, Chatterjee M2, Mitra PK1.(PubMed)
(483) Iron Supplementation Attenuates the Inflammatory Status of Anemic Piglets by Regulating Hepcidin by Pu Y1, Guo B, Liu D, Xiong H, Wang Y, Du H.(PubMed)
(484) A novel inflammatory pathway mediating rapid hepcidin-independent hypoferremia by Guida C1, Altamura S2, Klein FA3, Galy B3, Boutros M4, Ulmer AJ5, Hentze MW6, Muckenthaler MU2.(PubMed)
(485) Prediction of iron deficiency in chronic inflammatory rheumatic disease anaemia by Baumann Kurer S1, Seifert B, Michel B, Ruegg R, Fehr J.(PubMed)
(486) Changes in Echocardiographic Parameters in Iron Deficiency Patients with Heart Failure and Chronic Kidney Disease Treated with Intravenous Iron by Toblli JE1, Di Gennaro F2, Rivas C2.(PubMed)
(487) Antimicrobial copper's potential.[No authors listed](PubMed)
(488) Effects of in-feed copper and tylosin supplementations on copper and antimicrobial resistance in fecal enterococci of feedlot cattle by Amachawadi RG1, Scott HM, Aperce C, Vinasco J, Drouillard JS, Nagaraja TG.(PubMed)
(489) Copper and immunity by Percival SS1.(PubMed)
(490) The immune system as a physiological indicator of marginal copper status? by Bonham M1, O'Connor JM, Hannigan BM, Strain JJ.(PubMed)
(491) Molecular basis for antioxidant enzymes in mediating copper detoxification in the nematode Caenorhabditis elegans by Song S1, Zhang X1, Wu H1, Han Y2, Zhang J1, Ma E1, Guo Y2.(PubMed)
(492) The effects of coadministration of dietary copper and zinc supplements on atherosclerosis, antioxidant enzymes and indices of lipid peroxidation in the cholesterol-fed rabbit by Alissa EM1, Bahijri SM, Lamb DJ, Ferns GA.(PubMed)
(493) Is copper pro- or anti-inflammatory? A reconciling view and a novel approach for the use of copper in the control of inflammation by Berthon G1(PubMed)
(494) Effect of a topical copper indomethacin gel on inflammatory parameters in a rat model of osteoarthritis by Yassin NZ1, El-Shenawy SM1, Abdel-Rahman RF1, Yakoot M2, Hassan M3, Helmy S4.(PubMed)
(495) Enhanced analgesic properties and reduced ulcerogenic effect of a mononuclear copper(II) complex with fenoprofen in comparison to the parent drug: promising insights in the treatment of chronic inflammatory diseases by Agotegaray M1, Gumilar F2, Boeris M3, Toso R3, Minetti A2.(PubMed)
(496) Nutraceuticals of anti-inflammatory activity as complementary therapy for rheumatoid arthritis by Al-Okbi SY1.(PubMed)
(497) Copper homeostasis in the CNS: a novel link between the NMDA receptor and copper homeostasis in the hippocampus by Schlief ML1, Gitlin JD.(PubMed)
(498) Effect of sex hormones on copper, zinc, iron nutritional status and hepatic lipid peroxidation in rats by Wachnik A1, Biró G, Biró L, Korom M, Gergely A, Antal M.(PubMed)
(499) Copper-zinc superoxide dismutase deficiency impairs sperm motility and in vivo fertility by Garratt M1, Bathgate R, de Graaf SP, Brooks RC.(PubMed)
(500)  Iron and copper in male reproduction: a double-edged sword by Tvrda E1, Peer R, Sikka SC, Agarwal A.(PubMed)
(501) Interactions of peptide amidation and copper: novel biomarkers and mechanisms of neural dysfunction by Bousquet-Moore D1, Prohaska JR, Nillni EA, Czyzyk T, Wetsel WC, Mains RE, Eipper BA.(PubMed)
(502) Deficient copper concentrations in dried-defatted hepatic tissue from ob/ob mice: A potential model for study of defective copper regulation in metabolic liver disease by Church SJ1, Begley P1, Kureishy N1, McHarg S1, Bishop PN1, Bechtold DA2, Unwin RD3, Cooper GJ4.(PubMed)
(503) Update on anemia and neutropenia in copper deficiency by Lazarchick J1.(PubMed)

The Coming Summer Day Picnic: Taxes Barbecue Dry Rub

Weight Loss the Easy Ways 
Andrea Albright Featured on Health and Fitness Jan. 2015
will Personally Coach You How to Get There The Easy Way

Posted By Kyle J. Norton
Health article writer and researcher; Over 10.000 articles and research papers have been written and published on line, including world wide health, ezine articles, article base, healthblogs, selfgrowth, best before it's news, the karate GB daily, etc.,.
Named TOP 50 MEDICAL ESSAYS FOR ARTISTS & AUTHORS TO READ by Disilgold.com Named 50 of the best health Tweeters Canada - Huffington Post
Nominated for shorty award over last 4 years
Some articles have been used as references in medical research, such as international journal Pharma and Bio science, ISSN 0975-6299.

Holiday collection by ATCO blue fame collection


Try this rub on lamb chops, skinless chicken thighs or steaks-or any meat that could be seared and cook quickly on the grill.
2 tsp. chill powder
2 tsp. brown sugar
11/2 tsp. salt
2 tsp. freshly ground black pepper
1 tsp. cumin
1/4 tsp. ground red pepper
Combined all ingredients. Store in a airtight container at room temperature for up to 2 months. Yield about 1/2 cup (Serving size: 1 tsp,)

For Over 1000 recipes http://kylejnorton.blogspot.ca/p/recipes.html

Super foods Library, Eat Yourself Healthy With The Best of the Best Nature Has to Offer

Tuesday, 7 April 2015

The Holistic prevention, management and treatment of Polycystic Ovarian Syndrome: The Top 5 Anti inflammatory Foods

Weight Loss the Easy Ways
Andrea Albright Featured on Health and Fitness Jan. 2015
will Personally Coach You How to Get There The Easy Way

If You Are Looking For a SoulMate
Celebrity Patti Stanger Will Coach You To Get Him/Her
and Keep Him/Her for Good,The Simple Way

By Kyle J. Norton Health article writer and researcher; Over 10.000 articles and research papers have been written and published on line, including world wide health, ezine articles, article base, healthblogs, selfgrowth, best before it's news, the karate GB daily, etc.,.
Named TOP 50 MEDICAL ESSAYS FOR ARTISTS & AUTHORS TO READ by Disilgold.com Named 50 of the best health Tweeters Canada - Huffington Post
Nominated for shorty award over last 4 years
Some articles have been used as references in medical research, such as international journal Pharma and Bio science, ISSN 0975-6299.


                                         Polycystic Ovarian Syndrome


Polycystic Ovarian Syndrome is defined as endocrinologic diseases among reproductive-age women caused by undeveloped follicles clumping on the ovaries that interferes with the function of the normal ovaries associated with a high risk for metabolic disorder(1) as resulting of enlarged ovaries(2), leading to hormone imbalance(excessive androgen and anti-müllerian hormone (AMH) )(1)(3)(4)(5), induced Hirsutism(6)(7), reproductive disorder(10(12)), risks of type 2 diabetes(9)(10)(11), metabolic syndrome(10)(12) and early cardiovasular disease(8)(13), acne(10)(14), endometrial cance(18)(19),weight gain and obesity(15)(16)(17). The syndrome effects over 5% of women population or 1 in 20 women.
Unfortunately, according to studies, women with PCOs after the reproductive age, are associated to  continuously increase risk of type II diabetes, with no increasing altered glucose tolerance(20), CVD and hypertension(21).



                               The prevention and management 

Polycystic ovary syndrome (PCOS) is unpreventable in Western medicine. Early diagnosis and treatment  may reduce risk of its complications, including infertility, metabolic syndrome, obesity, diabetes, cardiovascular diseases, stroke, etc.

Although PCOS cannot be completely avoided, strengthening immunity has shown a significant reduction of chronic inflammatory diseases(266)(267)(268).


                             The Top 5 Anti inflammatory Foods 

According to Medical University Innsbruck, the interactions between diet, immunity, and the microbiota, may be necessary for the develop food-based approaches to prevent or treat many diseases(285).
1. Garlic
Garlic (Allium sativum) is a species in the onion genus, belongings to family Amaryllidaceae, native to central Asia, used popularly in traditional and Chinese medicine to treat common cold and flu(306), digestive disorders(313), diabetes(322)(323)(324), therosclerosis,(325), cardiovascular diseases(326)(327), strengthen immunity(319) against irregular cell growth suach as tumors(314)(315)(316)(317)(318), bacterias(310)(311)(312), fungii(310)(311) and virus(320)(321), lower blood pressure(328)(329)(330) and cholesterol levels(310)(331), etc. Recent studies also showed that garlic exhibits its anti-inflammatory effects against chronic inflammatory disease(307)(308)(309) through phytochemical allicin(307) and other machenisms(308)(309).

2. Ginger
Ginger (Zingiber officinale) or ginger root is the genus Zingiber, belongings to the family Zingiberaceae, native to Tamil,  used in traditional and Chinese medicine to treat dyspepsia(332)(333), gastrointestinal disorder(334) such as nausea and vomiting(335), constipation(337), gastric ulcer(338),.... edema(339)(340), difficult urination(340), colic and diarrea(341), etc.... Strong evidences in Western studies also showed that ginger also induce some mechanisms for treatment of pschological symptoms, such as anxiety(342). depression(343),..., diabetes(344)(345), hypertension(346), irregular cell growth  such as tumors(347)(348)(349), and rheumatoid arthritis(352) and  osteoarthritis(336) through its anti inflammatory, antioxidant and immune-modulatory effects(346)(350)(351), speed up wounding healing(352)(353), etc.

3. Turmeric
Turmeric is a perennial plant in the genus Curcuma, belongings to the family Zingiberaceae, native to tropical South Asia. The herb has been used in traditional medicine as anti-oxidant(354)(355), hypoglycemic(356)(357), colorant(358), antiseptic(359)(360), wound healing(361) agents, and to treat flatulence(362), bloating(363), and appetite loss(364), ulcers(365), eczema(366), inflammations(367), etc. Epidemiological studies also found that the efficacy of turmeric for treatment for diabetes(369)(370), microbial infection(359)(371)(372), gastrointestinal diseases(359)(373) and irregular cell growth such as cancer(374)(375)(376) through its anti inflammatory(367)(368), antioxidant(377)(378) and immunmodulatory(379)(380) activities. 

4. Green tea
Green tea contains more amount of antioxidants than any drinks or food with the same volume, and is the leaves of Camellia sinensis, undergone minimal oxidation during processing, originated from China. Green tea has been a precious drink in traditional Chinese culture and used exceptional in socialization for more than 4000 thousand years. Because of their health benefits, green tea has been cultivated for commercial purposes all over the world. Epidemiological studies suggested that green tea consists many pharmateutical properties, including anti cancers(381)(382), anti diabetes(383)(384), induced weight loss(385)(386)anti aging and longevity(387)(388), anti allergy(389)(390), anti micro-organisms(391)(392), anti lipidemic(393)(394). anti stroke(385)(396) and cardiovascular diseases, through its antioxidant(397)(398), anti inflammatory(399)(400) and immune modulatory(401)(402) activities.

5. Shiitake mushrooms
Shiitake mushroom is an edible mushroom, genus Lentinula, belonging to family Marasmiaceae, native to East Asia and widely cultivated for consumption for its health benefits and commercial purpose in many Asian countries. The herb has been used in traditional medicine as blood tonic agent and to strengthen immune system)403)(405), treat colds(407), measles(407), bronchial inflammations(407), etc. Recent studies showed that Shiitake mushrooms are also consisted properties of anti cancers(403)(404), anti microorganisms(407)(408) such as  HIV)410)(411)and hepatitis virus(407)(412), enhanced immune system(403)(405)(406) against inflammation(413)(414) causes of chronic inflammatory diseases(415) and the development of free radicals(414)(416), lowering cholesterol levels(407)(417)(418), treating heart disease(407)(419), diabetes(407)(420), etc....



Ovarian Cysts And PCOS Elimination
Holistic System In Existence That Will Show You How To
Permanently Eliminate All Types of Ovarian Cysts Within 2 Months   

 
References
(1) Adiposity and metabolic dysfunction in polycystic ovary syndrome by Sam S.(PubMed)
(2) A "kiss" before conception: triggering ovulation with kisspeptin-54 may improve IVF by Young SL.(PubMed)
(3.) Androgen hyperfunction and excessive heterosexual hair growth in women, with special attention to the polycystic ovarian syndrome by Lunde O1.(PubMed)
(4) Expression of anti-Müllerian hormone in letrozole rat model of polycystic ovary syndrome by Du DF1, Li XL, Fang F, Du MR.(PubMed)
(5) [Serum levels of anti-muller hormone in women with polycystic ovary syndrome and healthy women of reproductive age].[Article in Bulgarian] by Parahuleva N, Pehlivanov B, Orbecova M, Deneva T, Uchikova E.(PubMed)
(6) [Current opinions on the etiology and pathophysiology of hirsutism].[Article in Polish] by Krysiak R1, Kedzia A, Okopień B.(PubMed)
(7) The clinical evaluation of hirsutism by Somani N1, Harrison S, Bergfeld WF.(PubMed)
(8) Polycystic ovary syndrome and insulin: our understanding in the past, present and future by Mayer SB1, Evans WS, Nestler JE.(PubMed)
(9) Association of mean platelet volume with androgens and insulin resistance in nonobese patients with polycystic ovary syndrome by Dogan BA1, Arduc A2, Tuna MM1, Karakılıc E1, Dagdelen I1, Tutuncu Y1, Berker D1, Guler S1.(PubMed)
(10) Approach to the patient: contraception in women with polycystic ovary syndrome by Yildiz BO1.(PubMed)
(11) Polycystic ovarian syndrome (PCOS): a significant contributor to the overall burden of type 2 diabetes in women by Talbott EO1, Zborowski JV, Rager JR, Kip KE, Xu X, Orchard TJ.(PubMed)
(12) Prevalence of vitamin D deficiency in Slovak women with polycystic ovary syndrome and its relation to metabolic and reproductive abnormalities by Figurová J1, Dravecká I, Javorský M, Petríková J, Lazúrová I.(PubMed)
(13) Role of Insulin Sensitizers on Cardiovascular Risk Factors in Polycystic Ovarian Syndrome: A Meta-Analysis by Thethi TK1, Katalenich B2, Nagireddy P3, Chabbra P4, Kuhadiya N5, Fonseca V1.(PubMed)
(14) Acne in hirsute women by Lumezi BG1, Pupovci HL1, Berisha VL1, Goçi AU2, Gerqari A3.(PubMed)
(15) Obesity and polycystic ovary syndrome by Naderpoor N1, Shorakae S, Joham A, Boyle J, De Courten B, Teede HJ.(PubMed)
(16) Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan by Teede H1, Deeks A, Moran L.(PubMed)
(17) Metabolic Evidence of Diminished Lipid Oxidation in Women With Polycystic Ovary Syndrome. by Whigham LD1, Butz DE2, Dashti H3, Tonelli M3, Johnson LK1, Cook ME2, Porter WP4, Eghbalnia HR5, Markley JL6, Lindheim SR7, Schoeller DA8, Abbott DH9, Assadi-Porter FM10.(PubMed)
(18) Risk of endometrial, ovarian and breast cancer in women with polycystic ovary syndrome: a systematic review and meta-analysis by Barry JA1, Azizia MM1, Hardiman PJ2.(PubMed)
(19) Risk of cancer among women with polycystic ovary syndrome: a Danish cohort study by Gottschau M1, Kjaer SK2, Jensen A1, Munk C1, Mellemkjaer L3.(PubMed)
(20) Polycystic ovary syndrome: metabolic consequences and long-term management by Carmina E1.(PubMed)
(21) Arterial stiffness is increased in asymptomatic nondiabetic postmenopausal women with a polycystic ovary syndrome phenotype by Armeni E1, Stamatelopoulos K, Rizos D, Georgiopoulos G, Kazani M, Kazani A, Kolyviras A, Stellos K, Panoulis K, Alexandrou A, Creatsa M, Papamichael C, Lambrinoudaki I.(PubMed)
(266) [Immunopathological responses in women with chronic inflammatory diseases of the uterus and appendages and their therapeutic correction].[Article in Russian] by Medvedev BI1, Kazachkova EA, Kazachkov EL.(PubMed)
(267) Cross Talk Between ER Stress, Oxidative Stress, and Inflammation in Health and Disease by Dandekar A1, Mendez R, Zhang K.(PubMed)
(268) New dog and new tricks: evolving roles for IL-33 in type 2 immunity by Lott JM1, Sumpter TL1, Turnquist HR2.(PubMed)
(285) FoodImmunity, and the Microbiome by Tilg H1, Moschen AR2.(PubMed)
(332) Effect of ginger on gastric motility and symptoms of functional dyspepsia by Hu ML1, Rayner CK, Wu KL, Chuah SK, Tai WC, Chou YP, Chiu YC, Chiu KW, Hu TH.(PubMed)
(333) Benefit of supplements in functional dyspepsia after treatment of Helicobacter pylori by Pellicano R1, Ribaldone DG, Saracco GM, Leone N, De Angelis C, Arrigoni A, Morello E, Sapone N, Cisarò F, Astegiano M.(PubMed)
(334) A review of the gastroprotective effects of ginger (Zingiber officinale Roscoe) by Haniadka R1, Saldanha E, Sunita V, Palatty PL, Fayad R, Baliga MS.(PubMed)
(335) Ginger in the prevention of nausea and vomiting: a review by Palatty PL1, Haniadka R, Valder B, Arora R, Baliga MS.(PubMed)
(336) Influence of a specific ginger combination on gastropathy conditions in patients with osteoarthritis of the knee or hip by Drozdov VN1, Kim VA, Tkachenko EV, Varvanina GG.(PubMed)
(337) Antiproliferative properties of Padma Lax and its components ginger and elecampane by Hofbauer S1, Kainz V, Golser L, Klappacher M, Kiesslich T, Heidegger W, Krammer B, Hermann A, Weiger TM.(PubMed)
(338) The postulated mechanism of the protective effect of ginger on the aspirin induced gastric ulcer: Histological and immunohistochemical studies by Salah Khalil M1.(PubMed)
(339) Zingiber officinale ameliorates allergic asthma via suppression of Th2-mediated immune response by Khan AM1, Shahzad M, Raza Asim MB, Imran M, Shabbir A.(PubMed)
(340) Effects of various fragrant ingredients on desmopressin-induced fluid retention in mice by Morimoto Y1, Shibata Y.(PubMed)
(341) Pharmacological basis for the medicinal use of ginger in gastrointestinal disorders by Ghayur MN1, Gilani AH.(PubMed)
(342) Identification of serotonin 5-HT1A receptor partial agonists in ginger by Nievergelt A1, Huonker P, Schoop R, Altmann KH, Gertsch J.(PubMed)
(343) Antidepressant-like synergism of extracts from magnolia bark and ginger rhizome alone and in combination in mice by Yi LT1, Xu Q, Li YC, Yang L, Kong LD.(PubMed)
(344) Comparative effects of dietary ginger (Zingiber officinale) and garlic (Allium sativum) investigated in a type 2 diabetes model of rats by Islam MS1, Choi H.(PubMed)
(345) The effect of ginger (Zingiber officinale) on glycemic markers in patients with type 2 diabetes by Shidfar F, Rajab A, Rahideh T, Khandouzi N, Hosseini S, Shidfar S.(PubMed)
(346) Herbal Medicine: Biomolecular and Clinical Aspects. 2nd edition , by Benzie IFF, Wachtel-Galor S, editors. Boca Raton (FL): CRC Press; 2011.(PubMed)
(347) Anti-cancer activity of Ginger (Zingiber officinale) leaf through the expression of activating transcription factor 3 in human colorectal cancer cells by Park GH, Park JH, Song HM, Eo HJ, Kim MK, Lee JW, Lee MH, Cho KH, Lee JR, Cho HJ, Jeong JB1.(PubMed)
(348) Effects of ginger (Zingiber officinale Roscoe) on DNA damage and development of urothelial tumors in a mouse bladder carcinogenesis model by Bidinotto LT1, Spinardi-Barbisan AL, Rocha NS, Salvadori DM, Barbisan LF.(PubMed)
(349) Gelam honey and ginger potentiate the anti cancer effect of 5-FU against HCT 116 colorectal cancer cells by Hakim L1, Alias E, Makpol S, Ngah WZ, Morad NA, Yusof YA.(PubMed)
(350) Immunity: plants as effective mediators by Sultan MT1, Butt MS, Qayyum MM, Suleria HA.(PubMed)
(351) 6-Shogaol inhibits chondrocytes' innate immune responses and cathepsin-K activity by Villalvilla A1, da Silva JA, Largo R, Gualillo O, Vieira PC, Herrero-Beaumont G, Gómez R.(PubMed)
(352) Zingiber officinale: A Potential Plant against Rheumatoid Arthritis by Al-Nahain A1, Jahan R2, Rahmatullah M1.(PubMed)
(353) Theoretical and experimental study on lipophilicity and wound healing activity of ginger compounds by Bakht MA1, Alajmi MF2, Alam P2, Alam A3, Alam P3, Aljarba TM3.(PubMed)
(354) A Newly Designed Curcumin Analog Y20 Mitigates Cardiac Injury via Anti-Inflammatory and Anti-Oxidant Actions in Obese Rats by Qian Y1, Zhong P2, Liang D1, Xu Z1, Skibba M1, Zeng C3, Li X1, Wei T3, Wu L4, Liang G1.(PubMed)
(355) Protective effects of various dosage of Curcumin against morphine induced apoptosis and oxidative stress in rat isolated hippocampus by Motaghinejad M1, Karimian M2, Motaghinejad O3, Shabab B4, Yazdani I5, Fatima S2.(PubMed)
(356) Hypoglycemic activity of curcumin synthetic analogues in alloxan-induced diabetic rats by Das KK1, Razzaghi-Asl N, Tikare SN, Di Santo R, Costi R, Messore A, Pescatori L, Crucitti GC, Jargar JG, Dhundasi SA, Saso L.(PubMed)
(357) Curcumin enhances recovery of pancreatic islets from cellular stress induced inflammation and apoptosis in diabetic rats by Rashid K1, Sil PC2.(PubMed)
(358) Food preservatives sodium benzoate and propionic acid and colorant curcumin suppress Th1-type immune response in vitro by Maier E1, Kurz K, Jenny M, Schennach H, Ueberall F, Fuchs D.(PubMed)
(359) Gastroprotective effect of ethanolic extract of Curcuma xanthorrhiza leaf against ethanol-induced gastric mucosal lesions in Sprague-Dawley rats by Rahim NA1, Hassandarvish P2, Golbabapour S3, Ismail S4, Tayyab S4, Abdulla MA2.(PubMed)
(360) Efficacy of contemporary and novel Intracanal medicaments against enterococcus faecalis by Marickar RF1, Geetha RV2, Neelakantan P1.(PubMed)
(361) Novel curcumin-loaded gel-core hyaluosomes with promising burn-wound healing potential: Development, in-vitro appraisal and in-vivo studies by El-Refaie WM1, Elnaggar YS2, El-Massik MA1, Abdallah OY3(PubMed)
(363) Randomized double blind study of Curcuma domestica Val. for dyspepsia by Thamlikitkul V, Bunyapraphatsara N, Dechatiwongse T, Theerapong S, Chantrakul C, Thanaveerasuwan T, Nimitnon S, Boonroj P, Punkrut W, Gingsungneon V, et al.(PubMed)
(364) Effects of the extracts and an active compound curcumenone isolated from Curcuma zedoaria rhizomes on alcohol-induced drunkenness in mice by Kimura Y1, Sumiyoshi M, Tamaki T.(PubMed)
(365) The evaluation of anti-ulcerogenic effect of rhizome starch of two source plants of Tugaksheeree (Curcuma angustifolia Roxb. and Maranta arundinacea Linn.) on pyloric ligated rats by Rajashekhara N1, Ashok BK2, Sharma PP3, Ravishankar B4.(PubMed)
(366) Clinical evaluation of an Indian polyherbal topical formulation in the management of eczema by Rawal RC1, Shah BJ, Jayaraaman AM, Jaiswal V.(PubMed)
(367) Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: A randomized controlled trial and an updated meta-analysis by Panahi Y1, Hosseini MS2, Khalili N2, Naimi E2, Majeed M3, Sahebkar A4.(PubMed)
(368) Anti-Inflammatory Effects of Novel Standardized Solid Lipid Curcumin Formulations by Nahar PP1, Slitt AL, Seeram NP.(PubMed)
(369) Involvement of liver in diabetes mellitus: herbal remedies by Thent ZC1, Das S1.(PubMed)
(370) Beneficial effects of Chinese prescription Kangen-karyu on diabetes associated with hyperlipidemia, advanced glycation endproducts, and oxidative stress in streptozotocin-induced diabetic rats by Kim HY1, Okamoto T, Yokozawa T.(PubMed)
(371) Bactericidal activity of curcumin I is associated with damaging of bacterial membrane by Tyagi P1, Singh M1, Kumari H1, Kumari A1, Mukhopadhyay K1.(PubMed)
(372) Antimicrobial activity of turmeric extract and its potential use in food industry by Gul P1, Bakht J2.(PubMed)
(373) Efficacy of turmeric in the treatment of digestive disorders: a systematic review and meta-analysis protocol by Thavorn K1, Mamdani MM, Straus SE.(PubMed)
(374) Curcumol Induces Apoptosis in SPC-A-1 Human Lung Adenocarcinoma Cells and Displays Anti-neoplastic Effects in Tumor Bearing Mice by Tang QL1, Guo JQ, Wang QY, Lin HS, Yang ZP, Peng T, Pan XD, Liu B, Wang SJ, Zang LQ.(PubMed)
(375) Curcumol induces apoptosis via caspases-independent mitochondrial pathway in human lung adenocarcinoma ASTC-a-1 cells by Zhang W1, Wang Z, Chen T.(PubMed)
(376) Anti-cancer properties of terpenoids isolated from Rhizoma Curcumae--a review by Lu JJ1, Dang YY, Huang M, Xu WS, Chen XP, Wang YT.(PubMed)
(377) In vitro Antioxidant Potential in Sequential Extracts of Curcuma caesia Roxb. Rhizomes by Reenu J1, Azeez S1, Bhageerathy C1.(PubMed)
(378) Polyphenolic composition and antioxidant activities of 6 new turmeric (Curcuma longa L) accessions by Chinedum E1, Kate E, Sonia C, Ironkwe A, Andrew I.(PubMed)
(379) Curcuma as a functional food in the control of cancer and inflammation by Schaffer M1, Schaffer PM, Zidan J, Bar Sela G.(PubMed)
(380) Curcumin induces apoptosis in breast cancer cell lines and delays the growth of mammary tumors in neu transgenic mice by Masuelli L1, Benvenuto M, Fantini M, Marzocchella L, Sacchetti P, Di Stefano E, Tresoldi I, Izzi V, Bernardini R, Palumbo C, Mattei M, Lista F, Galvano F, Modesti A, Bei R.(PubMed)
(381) Induction of apoptosis and cell cycle arrest in cancer cells by in vivo metabolites of teas by Zhang G1, Miura Y, Yagasaki K.(PubMed)
(382) Antimutagenic and anticarcinogenic activity of tea polyphenols by Kuroda Y1, Hara Y.(PubMed)
(383) High oolong tea consumption predicts future risk of diabetes among Japanese male workers: a prospective cohort study by Hayashino Y1, Fukuhara S, Okamura T, Tanaka T, Ueshima H; HIPOP-OHP Research Group.(PubMed)
(384) Antihyperglycemic effect of oolong tea in type 2 diabetes by Hosoda K1, Wang MF, Liao ML, Chuang CK, Iha M, Clevidence B, Yamamoto S.(PubMed)
(385) Beneficial effects of oolong tea consumption on diet-induced overweight and obese subjects by He RR1, Chen L, Lin BH, Matsui Y, Yao XS, Kurihara H.(PubMed)
(386) Thermogenic ingredients and body weight regulation by Hursel R1, Westerterp-Plantenga MS.(PubMed)
(387) Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity by Calabrese V1, Cornelius C, Cuzzocrea S, Iavicoli I, Rizzarelli E, Calabrese EJ.(PubMed)
(388) The potential influence of plant polyphenols on the aging process by Cherniack EP1.(PubMed)
(389) Antiallergic constituents from oolong tea stem by Ohmori Y1, Ito M, Kishi M, Mizutani H, Katada T, Konishi H.(PubMed)
(390) [Effect of tea extracts, catechin and caffeine against type-I allergic reaction].[Article in Japanese] by Shiozaki T1, Sugiyama K, Nakazato K, Takeo T.(PubMed)
(391) Antibacterial activity of Iranian green and black tea on streptococcus mutans: an in vitro study by Naderi NJ1, Niakan M, Kharazi Fard MJ, Zardi S.(PubMed)
(392) Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas by Friedman M1.(PubMed)
(393) Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols by Lin JK1, Lin-Shiau SY.(PubMed)
(394) Polyphenol-enriched oolong tea increases fecal lipid excretion by Hsu TF1, Kusumoto A, Abe K, Hosoda K, Kiso Y, Wang MF, Yamamoto S.(PubMed)
(395) Green and black tea consumption and risk of stroke: a meta-analysis by Arab L1, Liu W, Elashoff D.(PubMed)
(396) Does tea affect cardiovascular disease? A meta-analysis by Peters U1, Poole C, Arab L.(PubMed)
(397) Determination of tea components with antioxidant activity by Cabrera C1, Giménez R, López MC.(PubMed)
(398) Structural determination and DPPH radical-scavenging activity of two acylated flavonoid tetraglycosides in oolong tea (Camellia sinensis) by Lee VS1, Chen CR, Liao YW, Tzen JT, Chang CI.(PubMed)
(399) Evaluation of anti-inflammatory effects of green tea and black tea: A comparative in vitro study by Chatterjee P1, Chandra S, Dey P, Bhattacharya S.(PubMed)
(400) Anti-inflammatory and anti-oxidative effects of the green tea polyphenol epigallocatechin gallate in human corneal epithelial cells by Cavet ME1, Harrington KL, Vollmer TR, Ward KW, Zhang JZ.(PubMed)
(401)  Immunomodulatory effects of EGCG fraction of green tea extract in innate and adaptive immunity via T regulatory cells in murine model by Kuo CL1, Chen TS, Liou SY, Hsieh CC.(PubMed)
(402) Immunomodulating effects of epigallocatechin-3-gallate from green tea: mechanisms and applications by Pae M1, Wu D.(PubMed)
(403) Structure and inducing tumor cell apoptosis activity of polysaccharides isolated from Lentinus edodes by Wang KP1, Zhang QL, Liu Y, Wang J, Cheng Y, Zhang Y.(PubMed)
(404) Polysaccharides from Tricholoma matsutake and Lentinus edodes enhance 5-fluorouracil-mediated H22 cell growth inhibition by Ren M, Ye L, Hao X, Ren Z, Ren S, Xu K, Li J.(PubMed)
(405) Structure and immuno-stimulating activities of a new heteropolysaccharide from Lentinula edodes by Xu X1, Yan H, Zhang X.(PubMed)
(406) Dietary supplementation with rice bran fermented with Lentinus edodes increases interferon-γ activity without causing adverse effects: a randomized, double-blind, placebo-controlled, parallel-group study by Choi JY, Paik DJ, Kwon DY, Park Y1.(PubMed)
(407) Lentinus edodes: a macrofungus with pharmacological activities by Bisen PS1, Baghel RK, Sanodiya BS, Thakur GS, Prasad GB.(PubMed)
(408) An examination of antibacterial and antifungal properties of constituents of Shiitake (Lentinula edodes) and oyster (Pleurotus ostreatus) mushrooms by Hearst R1, Nelson D, McCollum G, Millar BC, Maeda Y, Goldsmith CE, Rooney PJ, Loughrey A, Rao JR, Moore JE.(PubMed)
(409) Antimicrobial properties of shiitake mushrooms (Lentinula edodes) by Rao JR, Smyth TJ, Millar BC, Moore JE.(PubMed)
(410) A placebo-controlled trial of the immune modulator, lentinan, in HIV-positive patients: a phase I/II trial by Gordon M1, Bihari B, Goosby E, Gorter R, Greco M, Guralnik M, Mimura T, Rudinicki V, Wong R, Kaneko Y.(PubMed)
(411) A phase II controlled study of a combination of the immune modulator, lentinan, with didanosine (ddI) in HIV patients with CD4 cells of 200-500/mm3 by Gordon M1, Guralnik M, Kaneko Y, Mimura T, Goodgame J, DeMarzo C, Pierce D, Baker M, Lang W.(PubMed)
(412) [Liver protective effect of Lentinula edodes mycelia(LEM)].[Article in Japanese] by Yagi K1.(PubMed)
 (413) Anti-inflammatory effects of five commercially available mushroom species determined in lipopolysaccharide and interferon-γ activated murine macrophages by Gunawardena D1, Bennett L, Shanmugam K, King K, Williams R, Zabaras D, Head R, Ooi L, Gyengesi E, Münch G.(PubMed)
(414) Effect of shiitake (Lentinus edodes) extract on antioxidant and inflammatory response to prolonged eccentric exercise by Zembron-Lacny A1, Gajewski M, Naczk M, Siatkowski I.(PubMed)
(415) Both common and specialty mushrooms inhibit adhesion molecule expression and in vitro binding of monocytes to human aortic endothelial cells in a pro-inflammatory environment by Martin KR1.(PubMed)
(416) Fumigation with essential oils improves sensory quality and enhanced antioxidant ability of shiitake mushroom (Lentinus edodes) by Jiang T1, Luo Z2, Ying T3.(PubMed)
(417) Antihyperlipidemic Effect of Dietary Lentinus edodes on Plasma, Feces and Hepatic Tissues in Hypercholesterolemic Rats by Yoon KN1, Alam N, Lee JS, Cho HJ, Kim HY, Shim MJ, Lee MW, Lee TS.(PubMed)
(418) Cholesterol-lowering effects of maitake (Grifola frondosa) fiber, shiitake (Lentinus edodes) fiber, and enokitake (Flammulina velutipes) fiber in rats by Fukushima M1, Ohashi T, Fujiwara Y, Sonoyama K, Nakano M.(PubMed)
(419) Effects of Lentinus edodes mycelia on dietary-induced atherosclerotic involvement in rabbit aorta by Yamada T1, Oinuma T, Niihashi M, Mitsumata M, Fujioka T, Hasegawa K, Nagaoka H, Itakura H.(PubMed)
(420) Protective effects of fractional extracts from Panellus serotinus on non-alcoholic fatty liver disease in obese, diabetic db/db mice by Inafuku M1, Nagao K, Nomura S, Shirouchi B, Inoue N, Nagamori N, Nakayama H, Toda T, Yanagita T.(PubMed)

The Summer Day Picnic: Korean Barbecue Wet Rub

Weight Loss the Easy Ways 
Andrea Albright Featured on Health and Fitness Jan. 2015
will Personally Coach You How to Get There The Easy Way

Posted By Kyle J. Norton
Health article writer and researcher; Over 10.000 articles and research papers have been written and published on line, including world wide health, ezine articles, article base, healthblogs, selfgrowth, best before it's news, the karate GB daily, etc.,.
Named TOP 50 MEDICAL ESSAYS FOR ARTISTS & AUTHORS TO READ by Disilgold.com Named 50 of the best health Tweeters Canada - Huffington Post
Nominated for shorty award over last 4 years
Some articles have been used as references in medical research, such as international journal Pharma and Bio science, ISSN 0975-6299.

Holiday collection by ATCO blue fame collection


Here is a traditional -tasting Korean rub that goes on just before the food is grill. It is great on Salmon, steak, pork, tenderloin, dark meat chicken, or any game bird such as duck or quail.

1/4 cup packed dark brown sugar
1/2 tsp. salt
4 tsp. bottle minced garlic
2 tsp. lower-sodium soy sauce
2 tsp. dark sesame oil
Combined all ingredients, Store in the airtight container in refrigerator for 1 week . Yield about 3 tsp. (serving size; i1/2 tsp.).

For Over 1000 recipes http://kylejnorton.blogspot.ca/p/recipes.html

Super foods Library, Eat Yourself Healthy With The Best of the Best Nature Has to Offer

Monday, 6 April 2015

Top 7 Foods for reducing risk of breast cancer

Weight Loss the Easy Ways
Andrea Albright Featured on Health and Fitness Jan. 2015
will Personally Coach You How to Get There The Easy Way

If You Are Looking For a SoulMate
Celebrity Patti Stanger Will Coach You To Get Him/Her
and Keep Him/Her for Good,The Simple Way

 Kyle J. Norton

The prevalence of breast cancer has been acknowledged in the scientific community worldwide. Breast cancer widespread in women in Southeast Asian as a result of over 2 decades of economic prosperity caused by unhealthy diet is a major concern. The findings for effective treatments are ongoing with some successes, but to discover an effective prevention and treatment with little or no side effects has proven difficultly. According to statistic, the risk of getting invasive breast cancer during life time of a women is 1/8.. Detections of tumorigenesis through self observation are still the best approach to cure breast cancer in early stage but reduction of the mortality has not been accounted even with extensively modern technology in the field of diagnosis and insurance protection in Western world, needless to say of counties which have little. Emerged suggestions of healthy diet with plenty vegetables and fruits(1)(2)(3) with change of life style(4)(5)(6) may be the only choice for women in reducing risk of the diseases.
In fact, certain vegetables(7)(8) and fruits(9)(10) or chemical compounds in them have been found to effect the breast cancer lines, induced apoptosis of breast cancer cells by blocking the energy sources of the pathways, influencing the signal pathways of the proliferation of the cells or suppressing the  promoted cancers genes.

Top 7 Foods for reducing risk of breast cancer 
1.  Black Rice
Black Rice is a type of rice with enriched Anthocyanins. including Indonesian black rice and Thai jasmine black rice. It has been considered as one of nature super foods with vary antioxidants.
Anthocyanins in black rice, with oral administration of AEBR (100 mg/kg/day) to BALB/c nude mice bearing MDA-MB-453 cell xenografts significantly suppressed tumor growth and angiogenesis by suppressing the expression of the physiological process factors MMP-9MMP-2( enzymes involved in the breakdown of extracellular matrix), and uPA(activator) in tumor tissue. Altogether, this study suggests the anticancer effects of AEBR against human breast cancer cells by inducing apoptosis and suppressing angiogenesis(37)(38). Other chemical constituents of species of black glumed’ Njavara (Oryza sativa L.) isolation, namely, flavonolignans, tricin 4'-O-(erythro-β-guaiacylglyceryl) ether (compound 1) and tricin 4'-O-(threo-β-guaiacylglyceryl) ether (compound 2), were also found to exert its effect on  breast cancer cell line MCF-7, causing apoptosis at concentration 40 and 30 μg/ by decreasing protein in the mitochondrial membrane, leading to chromatin condensation(39).

2. Green tea
Green tea contains more amount of antioxidants than any drinks or food with the same volume, and is the leaves of Camellia sinensis, undergone minimal oxidation during processing, originated from China. Green tea has been a precious drink in traditional Chinese culture and used exceptional in socialization for more than 4000 thousand years. Because of their health benefits, they have been cultivated for commercial purposes all over the world.
As suggestions, regular green tea intake has been associated with an inverse risk of breast cancer, as  green tea enhanced  the production of Ki-67, a cancer antigen when compare to women who do not.(63). (-)-epigallocatechin gallate, a phytochemical in green tea was found to exert its epigenetic effects in altering the DNA methyltransferase expression in many types of cancer, including breast cancer(64). Catechins, another phytochemical of green tea, inhibited proliferation of breast cancer cells and blocked carcinogenesis in breast cancer probably through the expression of translocation across membranes or for degradation, ribonucleoprotein DNA reduplication, apoptotic cascade, etc.(65). In inflammatory breast cancer, a most aggressive type of breast cancer, green tea polyphenol epigallocatechin-3-gallate (EGCG), showed decreased expression of genes that promote proliferation, migration, invasion, and survival in human breast cancer cell lines, SUM-149 and SUM-190 by reduced lymphangiogenesis-promoting genes(66) and inhibited the cell proliferation at 72 hours, after 10 microM of EGCG treatment. These suggested a possible reactivation of apoptosis, may be through the complexity of the angiogenic switch leading to the modulation of the cell migration processes against triple negative breast cancer cells(67). In human breast cancer MCF-7 cells, selenium containing polysaccharides (Se-GTPs) from a new variety of selenium-enriched Ziyang green tea, in dose-dependent, exhibited an effective cell growth inhibition by inducing MCF-7 cancer cells to undergo G2/M(cell cycle) phase arrest and apoptosis by an up-regulation of p53 (tumor antigen) expression(68). Unfortunately, epidemiological data,  on incidence of breast cancer and recurrence of breast cancer, consumption of 5 or more cups of green tea a day showed a non-statistically significant trend towards the prevention of breast cancer development. Evidence indicates that green tea consumption may possibly help prevent breast cancer recurrence in early stage (I and II) cancers(69).

3. Red wine
Red wine, made from the pigments of grape varieties is a wine involved extraction of color, and flavour components from the grape skin.
Red wine phenolics piceatannol and myricetin showed to inhibit the profileration of estrogens hormone-dependent breast cancer cells by binding to the gene expression of estrogen receptor (ER) alpha, which interacts with responsive DNA sequences located within the promoter region of target genes(70). Catechin hydrate (CH), an antioxidant in red wine, induced apotoposis against MCF-7 cells, with the rate of 40.7% and 41.16% in the volume of 150 μg/ml CH in 24 hours, respectively. Moreover, a 48-hour exposure to 150 μg/ml CH and 300 μg/ml CH resulted in 43.73% and 52.95% apoptotic cells, through its ability to increase the expression of pro-apoptotic genes such as caspase-3, -8, and -9 and TP53(71).

4. Black bean
Black bean is a Small roughly ovoid legumes with glossy black shells, genus Phaseolus, belonging to the family Fabaceae and can bought in most grocery stores all around the year in dried and canned forms. It is believed that black bean was first domesticated growth in South America.
Water-soluble condensed tannins isolated from black beans showed inhibition against breast cancer cell line MCF-7 at 24 microM by suppressed fetal bovine serum (blood fraction remaining after the natural coagulation of blood) stimulated cell migration and the secretion of matrix metalloproteinase-2 (MMP-2 or gelatinase A), matrix metalloproteinase-9 (MMP-9 or gelatinase B)(involved in the breakdown of extracellular matrix), and vascular endothelial growth factor VEGF(165)(regulator of angiogenesis) receptors expression(72). Phytochemical of black bean (Phaseolus vulgaris) seed coats, also enhanced potent antioxidant and antiproliferative activities against MCF-7 human breast cancer cells in doses depending manner(73).

5. Fermented soybean
Fermented soybean made from ground soybeans, is an popular ingredient used in cuisines of East and Southeast Asia.
Chungkookjang, a Korean fermented soybean, containing high concentration of isoflavones and peptides showed to inhibit the growth of breast cancer MCF7 cells in decreased dependent on the concentration by activating TGFβ pathway in cellular processes and depressing inflammation(74).
In murine breast adenocarcinoma,  fermented soy product (FSP) showed an effectiveness in tumor containment with smallest tumor volumes. Expressed larger amounts of nitric oxide and IL-1β (regulation of immune and inflammatory responses) and exhibited larger tumor sizes(75).

6. Peanut
Peanuts is belong to the the legume related to the bean family and first cultivated in the in the Chaco region of Paraguay and Bolivia.
Lectin ( (PNA), a chemical constituent of peanut was effective in inhibiting proliferation of human breast cell lines (ZR-75.1 and 734-B)(76) and MCF-7, T 47D, HBL 100, BT 20(77). Beta-Sitosterol found in  legumes, oil seeds and unrefined plant oils such as peanut butter, pistachios and sunflower, showed to exhibit the extrinsic apoptotic programmed cell death pathway in human breast MCF-7 and MDA-MB-231(78).

7. Faxseed
Flax seed is native to the region of the eastern Mediterranean to India and also known as common flax or linseed. Flax, an erect annual plant, can grow to 1.2 m tall. The leaves are 20–40 mm long and 3 mm broad.
Study of athymic mice fed with basal diet (control), or 10% FS diet, with or without TRAS (2.5mg/kg) treatment for 5 wk, showed a positive effects in reduced tumor size and increased tumor apoptosis. Dietary FS improved the function of TRAS in increased overall survival(79). In dietary flaxseed lignan or oil combined with tamoxifen showed an enhancing effect in reducing growth of estrogen receptor positive breast tumors (MCF-7) at low circulating estrogen levels by inhibiting cell proliferation, expression of genes, and proteins involved in the ER- and growth factor-mediated signaling pathways(80), with FO greatest effect in increasing apoptosis compared with TAM treatment alone(80). Lignans (a class of phytoestrogens) consumption was associated with a significant reduction in breast cancer risk(81). In estrogen-receptor-positive (MCF-7) and estrogen-receptor-negative (MDA-MB-231) cells, Flaxseed sprouts induced apoptosis and inhibited cancer cell growth by significantly upregulated p53(Anti tumor antigen) mRNA (transmits genetic information from DNA to the cytoplasm and controls certain chemical processes in the cell) in both cell cancer lines(82).

Many hours have been spent, hundred studies have been read, they may be worthless, if this article can not induce some women to change their diet patterns toward plenty vegetables and fruits accompanied with healthy style of living. Vegetables and fruits in the article, indeed, showed a positive effect in inhibiting proliferation  and causing apoptosis in many breast cancer cell lines. But with expansions of GMOs into almost all food sources in production of large scale, approved by FDA and promoted by elective officials for commercial profits with lack of long term studies, organic farming are sitting in the  defendant corner waiting for the death sentence in the next super gene of GMOs cross-contamination. Will the foods in this article be the same in the future? Will they still exert their anti breast cancer effects?.....


Ovarian Cysts And PCOS Elimination
Holistic System In Existence That Will Show You How To
Permanently Eliminate All Types of Ovarian Cysts Within 2 Months   


1) Intake of specific fruits and vegetables in relation to risk of estrogen receptor-negative breast cancer among postmenopausal women by Fung TT, Chiuve SE, Willett WC, Hankinson SE, Hu FB, Holmes MD.(PubMed)
(2) Fruits, vegetables and breast cancer risk: a systematic review and meta-analysis of prospective studies by Aune D, Chan DS, Vieira AR, Rosenblatt DA, Vieira R, Greenwood DC, Norat T.(PubMed)
(3) Premenopausal breast cancer risk and intake of vegetables, fruits, and related nutrients.
Freudenheim JL, Marshall JR, Vena JE, Laughlin R, Brasure JR, Swanson MK, Nemoto T, Graham S.(PubMed)
(4) Life style and risk of development of breast and ovarian cancer by Pięta B, Chmaj-Wierzchowska K, Opala T.(PubMed)
(5) Epidemiological evidence for a relationship between life events, coping style, and personality factors in the development of breast cancer by Butow PN, Hiller JE, Price MA, Thackway SV, Kricker A, Tennant CC.(PubMed)
(6) Epidemiological correlates of breast cancer in South India by Babu GR, Lakshmi SB, Thiyagarajan JA.(PubMed)
(7) Dietary organic isothiocyanates are cytotoxic in human breast cancer MCF-7 and mammary epithelial MCF-12A cell lines by Tseng E, Scott-Ramsay EA, Morris ME.(PubMed)
(8) Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype by

(9) Extracts of strawberry fruits induce intrinsic pathway of apoptosis in breast cancer cells and inhibits tumor progression in mice.by Somasagara RR, Hegde M, Chiruvella KK, Musini A, Choudhary B, Raghavan SC.(PubMed)
(10) Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro.by Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, Heber D.(PubMed)
(63) logical effects of green tea capsule supplementation in pre-surgery postmenopausal breast cancer patients by Yu SS, Spicer DV, Hawes D, Tseng CC, Yang CS, Pike MC, Wu AH(PubMed)
(64) Epigenetic effects of green tea polyphenols in cancer by Henning SM, Wang P, Carpenter CL, Heber D.(PubMed)
(65) Green Tea Catechins: Proposed Mechanisms of Action in Breast Cancer Focusing on The Interplay Between Survival and Apoptosis by Yiannakopoulou EC.(PubMed)
(66)Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells by Mineva ND, Paulson KE, Naber SP, Yee AS, Sonenshein GE.(PubMed)
(67) Epigallocatechin-3-Gallate (EGCG) inhibits cell proliferation and migratory behaviour of triple negative breast cancer cells by Braicu C, Gherman CD, Irimie A, Berindan-Neagoe I.(PubMed)
(68) Inhibitory effects and molecular mechanisms of selenium-containing tea polysaccharides on human breast cancer MCF-7 cells by He N, Shi X, Zhao Y, Tian L, Wang D, Yang X.(PubMed)
(69) The effects of green tea consumption on incidence of breast cancer and recurrence of breast cancer: a systematic review and meta-analysis by Seely D, Mills EJ, Wu P, Verma S, Guyatt GH.(PubMed)
(70) The red wine phenolics piceatannol and myricetin act as agonists for estrogen receptor alpha in human breast cancer cells by Maggiolini M, Recchia AG, Bonofiglio D, Catalano S, Vivacqua A, Carpino A, Rago V, Rossi R, Andò S.(PubMed)
(71) Catechin hydrate suppresses MCF-7 proliferation through TP53/Caspase-mediated apoptosis. by Alshatwi AA.(PubMed)
(72) Inhibition of Caco-2 colon, MCF-7 and Hs578T breast, and DU 145 prostatic cancer cell proliferation by water-soluble black bean condensed tannins by Bawadi HA, Bansode RR, Trappey A 2nd, Truax RE, Losso JN.(PubMed)
(73) Phytochemicals of black bean seed coats: isolation, structure elucidation, and their antiproliferative and antioxidative activities by Dong M, He X, Liu RH.(PubMed)
(74) Inflammation-related signaling pathways implicating TGFβ are revealed in the expression profiling of MCF7 cell treated with fermented soybean, chungkookjang by Hwang JS, Yoo HJ, Song HJ, Kim KK, Chun YJ, Matsui T, Kim HB.(PubMed)
(75) A soy-based product fermented by Enterococcus faecium and Lactobacillus helveticus inhibits the development of murine breast adenocarcinoma by Kinouchi FL, Maia DC, de Abreu Ribeiro LC, Placeres MC, de Valdez GF, Colombo LL, Rossi EA, Carlos IZ.(PubMed)
(76) Peanut agglutinin inhibits proliferation of cultured breast cancer cells by Marth C, Daxenbichler G.(PubMed)
(77) The influence of dietary lectins on the cell proliferation of human breast cancer cell lines in vitro by Valentiner U, Fabian S, Schumacher U, Leathem AJ.(PubMed)
(78) beta-Sitosterol activates Fas signaling in human breast cancer cells by Awad AB, Chinnam M, Fink CS, Bradford PG.(PubMed)
(79) Dietary flaxseed-trastuzumab interactive effects on the growth of HER2-overexpressing human breast tumors (BT-474) by Mason JK, Fu MH, Chen J, Yu Z, Thompson LU.(PubMed)
(80) Dietary flaxseed lignan or oil combined with tamoxifen treatment affects MCF-7 tumor growth through estrogen receptor- and growth factor-signaling pathways by Saggar JK, Chen J, Corey P, Thompson LU.(PubMed)
(81)Consumption of flaxseed, a rich source of lignans, is associated with reduced breast cancer risk by Lowcock EC, Cotterchio M, Boucher BA.(PubMed