Celery is a species of Apium graveolens, belonging to the family Apiaceae.
It is cultivated all around the globe as a vegetable. Celery can grow
to 1/2 m tall with stalks (leaf on the top) arranging in a conical shape
joined at a common base.
Nutrients
1. Carbohydrates
2. Sugars
3. Fiber
4. Fat
5. Protein
6. Water
7. Vitamin A
8. Vitamin B1
9. Vitamin B2
10. Vitamin B6
11. Vitamin C
12. Vitamin K
13. Folate
14. Calcium
15. Manganese
16. Magnesium
17. Phosphorus
18. Potassium
19. Iron
20. Sodium
21. Etc.
Phytochemicals
1. 3-n-butyl-phthalide
2. Acetylenics,
3. Coumarins
4. Phenolic acids
5. Limonene, coumarin,
6. Phthalides
7. Apigenin
and falcariondiol (1), (9Z) 1,9-heptadecadiene-4,6-diyne-3,8,11-triol
(2), oplopandiol (3), bergapten (4), 5,8-dimethoxy psoralen (5),
isofraxidin (6), eugenic acid (7), trans-ferulic acid (8),
trans-cinnamic acid (9), p-hydroxyphenylethanol ferulate (10),
caffeoylquinic acid (11), 5-p-trans-coumaroylquinic acid (12),
sedanolide (13), lunularin (14), lunularic acid (15),
2-(3-methoxy-4-hydroxyphenol)-propane-1,3-diol (16), D-allitol (17),
beta-sitosterol (18), benzolic acid (19), succinic acid (20), according
to Shenyang Pharmaceutical University(a).
Celery and cholesterol
Cholesterol is needed for our body to build cell
walls, make hormones and vitamin D, and create bile salts that help
you digest fat. However too much of it can be dangerous because cholesterol
cannot dissolve in your blood. The special particle called lipoprotein
moves this waxy, soft substance from place to place. If you have too
much low density lipoprotein LDL that is known as bad cholesterol,
overtime cholesterol can build up in your arterial walls causing
blockage and leading to heart attack and stroke.
The study of the composition of ethanolic extract of seeds of Apium graveolens L. and its chloroform and aqueous basic fraction in olive oil on induced hyperlipidemic rats inhibited the total cholesterol
(TC) triglycerides (TG), low density lipoproteins (LDL) level, and
significantly increased high density lipoprotein (HDL) in does depended
manner(b). Mountain celery seed essential
oils (MC-E)' ether fractionate and 1,1-diphenyl-2-picrylhydrazyl
exhibited strong hypolipidemic and free radical scanvenging activities,
repectively, according to the Da-Yeh University(c). Other study in the
genetically hypercholesterolaemic (RICO) rat model, aqueous celery extract, oral admisnistion for 8 weeks induced a significant reduction in serum total cholesterol (TC) level(d)(e)(f).
Ovarian Cysts And PCOS Elimination
Back to Researched articles - Points of view of Vitamins, Foods and Herbs
http://kylejnorton.blogspot.ca/p/blog-page_24.html
References
(a) [Chemical constituents of fresh celery].[Article in Chinese] by Zhou K1, Wu B, Zhuang Y, Ding L, Liu Z, Qiu F(PubMed)
(b) Effect of chloroform and aqueous basic fraction of ethanolic extract from Apium graveolens L. in experimentally-induced hyperlipidemia in ratsm by Iyer D1, Patil UK(PubMed)
(c) Hypolipidemic and antioxidant activity of mountain celery (Cryptotaenia japonica Hassk) seed essential oils by Cheng MC1, Lin LY, Yu TH, Peng RY.(PubMed)
(d) The mechanism underlying the hypocholesterolaemic activity of aqueous celery extract, its butanol and aqueous fractions in genetically hypercholesterolaemic RICO rats by Tsi D1, Tan BK.(PubMed)
(e) Effects of celery extract and 3-N-butylphthalide on lipid levels in genetically hypercholesterolaemic (RICO) rats by Tsi D1, Tan BK.(PubMed)
(f) Effects of aqueous celery (Apium graveolens) extract on lipid parameters of rats fed a high fat diet by Tsi D1, Das NP, Tan BK.(PubMed)
Health Researcher and Article Writer. Expert in Health Benefits of Foods, Herbs, and Phytochemicals. Master in Mathematics & Nutrition and BA in World Literature and Literary criticism. All articles written by Kyle J. Norton are for information & education only.
Pages
- Home
- Kyle J. Norton's Health Tips (948) Alternative Therapy, Whole Foods and Phytochemicals
- @General Health
- @Children Health
- #Women #Health
- My List of Super Foods
- @Phytochemicals In Foods
- Men Health
- Vitamin Therapy
- @Most common Types of Cancer
- Most Common Diseases of Elders
- @Obesity's complications and Weight Loss
- @Healthy Foods Index
- @Popular Chinese Herbs
- Phytochemicals - Cancers and Diseases
- Hormones
- @Popular Herbs
- Dietary Minerals
- 5900+ Health Articles Back By Clinical Trials and Studies
- Food Therapies
- Herbal Therapies
- Phytochemical therapy
- Alternative Therapy(Yoga, Anti Aging and Regular Walking)
- Tons of Recipes
Questions or Enquiries?
Any inquiry of published articles, please e mail kylenorton@hotmail.ca
Sunday, 13 April 2014
Saturday, 12 April 2014
Asthma in Vitamin A points of view
Kyle J. Norton
The widespread of incidence of asthma over last 20 years in South East Asian population, specially in children and aging group has caused some concerns to the government and scientific community. It may be due to over intake in artificial ingredients and polluted environment.
Vitamin A is a general term of Vitamin A Retinol, retinal, beta-carotene, alpha-carotene, gamma-carotene, and beta-cryptoxanthin best known for its functions for vision health and antioxidant scavenger and essential for growth and differentiation of a number of cells and tissues.
Recommended intakes of vitamin A, according to the Institute of Medicine of the National Academies (formerly National Academy of Sciences) is 600 µg daily as extremely high doses (>9000 mg) can be toxicity as causes of dry, scaly skin, fatigue, nausea, loss of appetite, bone and joint pains, headaches, etc.
Epidemiological studies linking vitamin A in reduced risk and treatment of asthma have been inconclusive(a)(b)(c)(d)(e), but according to the University G. D'Annunzio, and Respiratory Pathophysiology Center, dietary supplementation or adequate intake of lycopene and vitamin A rich foods may be beneficial in asthmatic subjects(f).
1. Retinols
Serum vitamin A concentrations was found significantly lower in asthmatic subjects than healthy control subjects and administration of all-trans retinoic acid, ATRA dramatically attenuated airway inflammation through inhibiting Th2 and Th17 differentiation and/or functions. according to the Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine(1). ORMDL3 is a candidate gene of childhood onset asthma, and high-transcript of ORMDL3 is associated with the development of asthma. According to Nanjing Medical University, all-trans retinoic acid (ATRA) is an active metabolite of Vitamin A, reduced the risk of asthma through maintained airway epithelial integrity, inhibited asthma effector cells differentiation, modulating immune response, possibly via facilitates ORMDL3 production probable through PKA/CREB(2). Also in all-trans retinoic acid, ATRA, the Tehran University of Medical Sciences study suggested that ATRA diverted the human immune response in neutral conditions (without adding polarizing cytokines) by increasing FOXP3+ cells and decreasing RORγt+ cells(3). In rats with asthma, ATRA was found to alleviate airway hyperresponsiveness and airway remodeling possibly through decreasing the protein expression of MMP-9(4). The study at 1Inserm U700 and Université Paris 7, in a mouse model of ovalbumin (OVA)-induced T helper (Th) 2-type responses and airway remodeling, indicated a effectiveness of liposomally encapsulated ATRA (Lipo-ATRA) in exacerbates allergic immune and inflammatory responses, most likely through promoting Th2 development(5).
Unfortunately, according to Johns Hopkins University, even though animal models suggest that vitamin A deficiency affects lung development adversely and promotes airway hyperresponsiveness, and may predispose to an increased risk of asthma, but vitamin A supplementation early in life was not associated with a decreased risk of asthma in an area with chronic vitamin A deficiency(6).
2. Carotenoids (beta-carotene, alpha-carotene, gamma-carotene and beta-cryptoxanthin) Carotenoids, plant pigments, converted to vitamin A after intake, play an important role in prevention and treatment of some diseases through it antioxidant effects. In the study of the effect of vitamin intake among asthmatic subject, researchers at the Hung Kuang University, found that nutritional supplement therapy including beta carotene may improve dysregulated oxidant and antioxidant status, inflammation and immune responses, pulmonary function, and health-related quality of life in patients with mild to moderate allergic asthma(7). The John Hunter Hospital study of asthmatic subjects with airway hyper-responsiveness (AHR), indicated a reduced levels of beta-carotene and alpha-tocopherol compared with those without AHR, possibly due to impaired antioxidant defences and are thus most susceptible to the damaging effects of oxidative (8). Other researchers suggested that the imbalance of antioxidants found in asthmatic patients may be the possible causes of the disease(9) and modifying the dietary intake of carotenoids alters clinical asthma outcomes with improvements evident only through increased whole foods intake, not supplements(10)
But according to the study of Yamaguchi University, there was no significant association for asthma in Japanese youth(11) and the study of a total of 423 children from a rural area of Thailand, in a Health Interview for Asthma Control questionnaire, showed no correlation of dietary intake of carotenoids between asthmatic and non-asthmatic children(12).
Taken altogether, using vitamin A in prevention and treatment of asthmatic patient remains controversial. According to the study in summarized the important of vitamin A in treatment of asthma, excessive intake of vitamin A may increase the risk or severity of asthma in industrialized countries whereas vitamin A deficiency continues to increase mortality from infectious diseases in developing countries(12)(13). Overdoses can lead to toxic symptoms. Please make sure you follow the guideline of the Institute of Medicine of the National Academies.
Ovarian Cysts And PCOS Elimination
Holistic System In Existence That Will Show You How To
Permanently Eliminate All Types of Ovarian Cysts Within 2 Months
Back to Most common Types of Cancer http://kylejnorton.blogspot.ca/p/blog-page.html
Back to Kyle J. Norton Home page http://kylejnorton.blogspot.ca
References
(a) Diet and asthma: vitamins and methyl donors by Han YY1, Blatter J1, Brehm JM1, Forno E1, Litonjua AA2, Celedón JC3.(PubMed)
(b) Maternal intake of vitamins A, E and K in pregnancy and child allergic disease: a longitudinal study from the Danish National Birth Cohort by Maslova E, Hansen S, Strøm M, Halldorsson TI, Olsen SF.(PubMed)
(c) Nutritional supplements and plasma antioxidants in childhood asthma by Fabian E1, Pölöskey P, Kósa L, Elmadfa I, Réthy LA.(PubMed)
(d) Nutritional supplement therapy improves oxidative stress, immune response, pulmonary function, and quality of life in allergic asthma patients: an open-label pilot study by Guo CH1, Liu PJ, Lin KP, Chen PC(PubMed)
(e) Cod liver oil intake and incidence of asthma in Norwegian adults--the HUNT study by Mai XM1, Langhammer A, Chen Y, Camargo CA Jr.(PubMed)
(f) Plasma lycopene and antioxidant vitamins in asthma: the PLAVA study by Riccioni G1, Bucciarelli T, Mancini B, Di Ilio C, Della Vecchia R, D'Orazio N.(PubMed)
(1) All-trans retinoic acid attenuates airway inflammation by inhibiting Th2 and Th17 response in experimental allergic asthma by Wu J1, Zhang Y, Liu Q, Zhong W, Xia Z.(PubMed)
(2) All-trans retinoic acid modulates ORMDL3 expression via transcriptional regulation by Zhuang LL1, Huang BX, Feng J, Zhu LH, Jin R, Qiu LZ, Zhou GP.(PubMed)
(3) Effect of all-trans retinoic acid (ATRA) on viability, proliferation, activation and lineage-specific transcription factors of CD4+ T cells by Bidad K1, Salehi E, Oraei M, Saboor-Yaraghi AA, Nicknam MH.(PubMed)
(4) [Effects of all-trans retinoic acid on airway responsiveness and airway remodeling in rats with asthma].[Article in Chinese] by Li WK1, Li Y, Zhong LL.(PubMed)
(5) Liposomal retinoic acids modulate asthma manifestations in mice by Maret M1, Ruffie C, Periquet B, Campo AM, Menevret M, Phelep A, Dziewiszek K, Druilhe A, Pretolani M.(PubMed)
(6) Supplementation with vitamin A early in life and subsequent risk of asthma by Checkley W1, West KP Jr, Wise RA, Wu L, LeClerq SC, Khatry S, Katz J, Christian P, Tielsch JM, Sommer A.(PubMed)
(7) Nutritional supplement therapy improves oxidative stress, immune response, pulmonary function, and quality of life in allergic asthma patients: an open-label pilot study by Guo CH1, Liu PJ, Lin KP, Chen PC.(PubMed)
(8) Reduced circulating antioxidant defences are associated with airway hyper-responsiveness, poor control and severe disease pattern in asthma by Wood LG1, Gibson PG.(PubMed)
(9) Antioxidants, oxidative stress, and pulmonary function in individuals diagnosed with asthma or COPD by Ochs-Balcom HM1, Grant BJ, Muti P, Sempos CT, Freudenheim JL, Browne RW, McCann SE, Trevisan M, Cassano PA, Iacoviello L, Schünemann HJ.(PubMed)
(10) Manipulating antioxidant intake in asthma: a randomized controlled trial by Wood LG1, Garg ML, Smart JM, Scott HA, Barker D, Gibson PG.(PubMed)
(11) Association of serum carotenoids and tocopherols with atopic diseases in Japanese children and adolescents by Okuda M1, Bando N, Terao J, Sasaki S, Sugiyama S, Kunitsugu I, Hobara T.(PubMed)
(12) Carotenoid intake and asthma prevalence in Thai children by Rerksuppaphol S1, Rerksuppaphol L.(PubMed)
(13) Vitamin A deficiency decreases and high dietary vitamin A increases disease severity in the mouse model of asthma by Schuster GU1, Kenyon NJ, Stephensen CB.(PubMed)
The widespread of incidence of asthma over last 20 years in South East Asian population, specially in children and aging group has caused some concerns to the government and scientific community. It may be due to over intake in artificial ingredients and polluted environment.
Vitamin A is a general term of Vitamin A Retinol, retinal, beta-carotene, alpha-carotene, gamma-carotene, and beta-cryptoxanthin best known for its functions for vision health and antioxidant scavenger and essential for growth and differentiation of a number of cells and tissues.
Recommended intakes of vitamin A, according to the Institute of Medicine of the National Academies (formerly National Academy of Sciences) is 600 µg daily as extremely high doses (>9000 mg) can be toxicity as causes of dry, scaly skin, fatigue, nausea, loss of appetite, bone and joint pains, headaches, etc.
Epidemiological studies linking vitamin A in reduced risk and treatment of asthma have been inconclusive(a)(b)(c)(d)(e), but according to the University G. D'Annunzio, and Respiratory Pathophysiology Center, dietary supplementation or adequate intake of lycopene and vitamin A rich foods may be beneficial in asthmatic subjects(f).
1. Retinols
Serum vitamin A concentrations was found significantly lower in asthmatic subjects than healthy control subjects and administration of all-trans retinoic acid, ATRA dramatically attenuated airway inflammation through inhibiting Th2 and Th17 differentiation and/or functions. according to the Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine(1). ORMDL3 is a candidate gene of childhood onset asthma, and high-transcript of ORMDL3 is associated with the development of asthma. According to Nanjing Medical University, all-trans retinoic acid (ATRA) is an active metabolite of Vitamin A, reduced the risk of asthma through maintained airway epithelial integrity, inhibited asthma effector cells differentiation, modulating immune response, possibly via facilitates ORMDL3 production probable through PKA/CREB(2). Also in all-trans retinoic acid, ATRA, the Tehran University of Medical Sciences study suggested that ATRA diverted the human immune response in neutral conditions (without adding polarizing cytokines) by increasing FOXP3+ cells and decreasing RORγt+ cells(3). In rats with asthma, ATRA was found to alleviate airway hyperresponsiveness and airway remodeling possibly through decreasing the protein expression of MMP-9(4). The study at 1Inserm U700 and Université Paris 7, in a mouse model of ovalbumin (OVA)-induced T helper (Th) 2-type responses and airway remodeling, indicated a effectiveness of liposomally encapsulated ATRA (Lipo-ATRA) in exacerbates allergic immune and inflammatory responses, most likely through promoting Th2 development(5).
Unfortunately, according to Johns Hopkins University, even though animal models suggest that vitamin A deficiency affects lung development adversely and promotes airway hyperresponsiveness, and may predispose to an increased risk of asthma, but vitamin A supplementation early in life was not associated with a decreased risk of asthma in an area with chronic vitamin A deficiency(6).
2. Carotenoids (beta-carotene, alpha-carotene, gamma-carotene and beta-cryptoxanthin) Carotenoids, plant pigments, converted to vitamin A after intake, play an important role in prevention and treatment of some diseases through it antioxidant effects. In the study of the effect of vitamin intake among asthmatic subject, researchers at the Hung Kuang University, found that nutritional supplement therapy including beta carotene may improve dysregulated oxidant and antioxidant status, inflammation and immune responses, pulmonary function, and health-related quality of life in patients with mild to moderate allergic asthma(7). The John Hunter Hospital study of asthmatic subjects with airway hyper-responsiveness (AHR), indicated a reduced levels of beta-carotene and alpha-tocopherol compared with those without AHR, possibly due to impaired antioxidant defences and are thus most susceptible to the damaging effects of oxidative (8). Other researchers suggested that the imbalance of antioxidants found in asthmatic patients may be the possible causes of the disease(9) and modifying the dietary intake of carotenoids alters clinical asthma outcomes with improvements evident only through increased whole foods intake, not supplements(10)
But according to the study of Yamaguchi University, there was no significant association for asthma in Japanese youth(11) and the study of a total of 423 children from a rural area of Thailand, in a Health Interview for Asthma Control questionnaire, showed no correlation of dietary intake of carotenoids between asthmatic and non-asthmatic children(12).
Taken altogether, using vitamin A in prevention and treatment of asthmatic patient remains controversial. According to the study in summarized the important of vitamin A in treatment of asthma, excessive intake of vitamin A may increase the risk or severity of asthma in industrialized countries whereas vitamin A deficiency continues to increase mortality from infectious diseases in developing countries(12)(13). Overdoses can lead to toxic symptoms. Please make sure you follow the guideline of the Institute of Medicine of the National Academies.
Ovarian Cysts And PCOS Elimination
Holistic System In Existence That Will Show You How To
Permanently Eliminate All Types of Ovarian Cysts Within 2 Months
Back to Most common Types of Cancer http://kylejnorton.blogspot.ca/p/blog-page.html
Back to Kyle J. Norton Home page http://kylejnorton.blogspot.ca
References
(a) Diet and asthma: vitamins and methyl donors by Han YY1, Blatter J1, Brehm JM1, Forno E1, Litonjua AA2, Celedón JC3.(PubMed)
(b) Maternal intake of vitamins A, E and K in pregnancy and child allergic disease: a longitudinal study from the Danish National Birth Cohort by Maslova E, Hansen S, Strøm M, Halldorsson TI, Olsen SF.(PubMed)
(c) Nutritional supplements and plasma antioxidants in childhood asthma by Fabian E1, Pölöskey P, Kósa L, Elmadfa I, Réthy LA.(PubMed)
(d) Nutritional supplement therapy improves oxidative stress, immune response, pulmonary function, and quality of life in allergic asthma patients: an open-label pilot study by Guo CH1, Liu PJ, Lin KP, Chen PC(PubMed)
(e) Cod liver oil intake and incidence of asthma in Norwegian adults--the HUNT study by Mai XM1, Langhammer A, Chen Y, Camargo CA Jr.(PubMed)
(f) Plasma lycopene and antioxidant vitamins in asthma: the PLAVA study by Riccioni G1, Bucciarelli T, Mancini B, Di Ilio C, Della Vecchia R, D'Orazio N.(PubMed)
(1) All-trans retinoic acid attenuates airway inflammation by inhibiting Th2 and Th17 response in experimental allergic asthma by Wu J1, Zhang Y, Liu Q, Zhong W, Xia Z.(PubMed)
(2) All-trans retinoic acid modulates ORMDL3 expression via transcriptional regulation by Zhuang LL1, Huang BX, Feng J, Zhu LH, Jin R, Qiu LZ, Zhou GP.(PubMed)
(3) Effect of all-trans retinoic acid (ATRA) on viability, proliferation, activation and lineage-specific transcription factors of CD4+ T cells by Bidad K1, Salehi E, Oraei M, Saboor-Yaraghi AA, Nicknam MH.(PubMed)
(4) [Effects of all-trans retinoic acid on airway responsiveness and airway remodeling in rats with asthma].[Article in Chinese] by Li WK1, Li Y, Zhong LL.(PubMed)
(5) Liposomal retinoic acids modulate asthma manifestations in mice by Maret M1, Ruffie C, Periquet B, Campo AM, Menevret M, Phelep A, Dziewiszek K, Druilhe A, Pretolani M.(PubMed)
(6) Supplementation with vitamin A early in life and subsequent risk of asthma by Checkley W1, West KP Jr, Wise RA, Wu L, LeClerq SC, Khatry S, Katz J, Christian P, Tielsch JM, Sommer A.(PubMed)
(7) Nutritional supplement therapy improves oxidative stress, immune response, pulmonary function, and quality of life in allergic asthma patients: an open-label pilot study by Guo CH1, Liu PJ, Lin KP, Chen PC.(PubMed)
(8) Reduced circulating antioxidant defences are associated with airway hyper-responsiveness, poor control and severe disease pattern in asthma by Wood LG1, Gibson PG.(PubMed)
(9) Antioxidants, oxidative stress, and pulmonary function in individuals diagnosed with asthma or COPD by Ochs-Balcom HM1, Grant BJ, Muti P, Sempos CT, Freudenheim JL, Browne RW, McCann SE, Trevisan M, Cassano PA, Iacoviello L, Schünemann HJ.(PubMed)
(10) Manipulating antioxidant intake in asthma: a randomized controlled trial by Wood LG1, Garg ML, Smart JM, Scott HA, Barker D, Gibson PG.(PubMed)
(11) Association of serum carotenoids and tocopherols with atopic diseases in Japanese children and adolescents by Okuda M1, Bando N, Terao J, Sasaki S, Sugiyama S, Kunitsugu I, Hobara T.(PubMed)
(12) Carotenoid intake and asthma prevalence in Thai children by Rerksuppaphol S1, Rerksuppaphol L.(PubMed)
(13) Vitamin A deficiency decreases and high dietary vitamin A increases disease severity in the mouse model of asthma by Schuster GU1, Kenyon NJ, Stephensen CB.(PubMed)
Food Therapy - Celery and Hepatoprotective effect
Celery is a species of Apium graveolens, belonging to the family Apiaceae.
It is cultivated all around the globe as a vegetable. Celery can grow
to 1/2 m tall with stalks (leaf on the top) arranging in a conical shape
joined at a common base.
Nutrients
1. Carbohydrates
2. Sugars
3. Fiber
4. Fat
5. Protein
6. Water
7. Vitamin A
8. Vitamin B1
9. Vitamin B2
10. Vitamin B6
11. Vitamin C
12. Vitamin K
13. Folate
14. Calcium
15. Manganese
16. Magnesium
17. Phosphorus
18. Potassium
19. Iron
20. Sodium
21. Etc.
Phytochemicals
1. 3-n-butyl-phthalide
2. Acetylenics,
3. Coumarins
4. Phenolic acids
5. Limonene, coumarin,
6. Phthalides
7. Apigenin
and falcariondiol (1), (9Z) 1,9-heptadecadiene-4,6-diyne-3,8,11-triol (2), oplopandiol (3), bergapten (4), 5,8-dimethoxy psoralen (5), isofraxidin (6), eugenic acid (7), trans-ferulic acid (8), trans-cinnamic acid (9), p-hydroxyphenylethanol ferulate (10), caffeoylquinic acid (11), 5-p-trans-coumaroylquinic acid (12), sedanolide (13), lunularin (14), lunularic acid (15), 2-(3-methoxy-4-hydroxyphenol)-propane-1,3-diol (16), D-allitol (17), beta-sitosterol (18), benzolic acid (19), succinic acid (20), according to Shenyang Pharmaceutical University(a).
Celery and Hepatoprotective effect
Hepatoprotective effect is defined of a protection against harmful of the Liver.
In acetaminophen-fed freshwater fish (Pangasius sutchi) induced liver damage, celery (Apium graveolens) leaves, showed to reverse the severity of liver damage, hepatic lipid, glycogen, ions status and histological alterations through its rich flavonoids(b). According to the Panjab University, in testing of Apium graveolens L. (Apiaceae) and Hygrophila auriculata (K. Schum.) Heine (Syn. Astercantha auriculata Nees, Acanthaceae) used in Indian systems of medicine for the treatment of liver ailments, showed a significant hepatoprotective activity of the methanolic extract of the seeds against paracetamol and thioacetamide intoxication in rats(c). Other, in the study of the composition of Celery, chicory leaves, and barley grains, showed a positive effects in decreasing the elevation of liver enzymes (aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase) and blood lipids(d).
Ovarian Cysts And PCOS Elimination
Back to Researched articles - Points of view of Vitamins, Foods and Herbs
http://kylejnorton.blogspot.ca/p/blog-page_24.html
References
(a) [Chemical constituents of fresh celery].[Article in Chinese] by Zhou K1, Wu B, Zhuang Y, Ding L, Liu Z, Qiu F(PubMed)
(b) Hepatoprotective action of celery (Apium graveolens) leaves in acetaminophen-fed freshwater fish (Pangasius sutchi) by Shivashri C1, Rajarajeshwari T, Rajasekar P.(PubMed)
(c) Hepatoprotective activity of Apium graveolens and Hygrophila auriculata against paracetamol and thioacetamide intoxication in rats by Singh A1, Handa SS.(PubMed)
(d) Hepatoprotective effect of feeding celery leaves mixed with chicory leaves and barley grains to hypercholesterolemic rats by Abd El-Mageed NM.(PubMed)
Nutrients
1. Carbohydrates
2. Sugars
3. Fiber
4. Fat
5. Protein
6. Water
7. Vitamin A
8. Vitamin B1
9. Vitamin B2
10. Vitamin B6
11. Vitamin C
12. Vitamin K
13. Folate
14. Calcium
15. Manganese
16. Magnesium
17. Phosphorus
18. Potassium
19. Iron
20. Sodium
21. Etc.
Phytochemicals
1. 3-n-butyl-phthalide
2. Acetylenics,
3. Coumarins
4. Phenolic acids
5. Limonene, coumarin,
6. Phthalides
7. Apigenin
and falcariondiol (1), (9Z) 1,9-heptadecadiene-4,6-diyne-3,8,11-triol (2), oplopandiol (3), bergapten (4), 5,8-dimethoxy psoralen (5), isofraxidin (6), eugenic acid (7), trans-ferulic acid (8), trans-cinnamic acid (9), p-hydroxyphenylethanol ferulate (10), caffeoylquinic acid (11), 5-p-trans-coumaroylquinic acid (12), sedanolide (13), lunularin (14), lunularic acid (15), 2-(3-methoxy-4-hydroxyphenol)-propane-1,3-diol (16), D-allitol (17), beta-sitosterol (18), benzolic acid (19), succinic acid (20), according to Shenyang Pharmaceutical University(a).
Celery and Hepatoprotective effect
Hepatoprotective effect is defined of a protection against harmful of the Liver.
In acetaminophen-fed freshwater fish (Pangasius sutchi) induced liver damage, celery (Apium graveolens) leaves, showed to reverse the severity of liver damage, hepatic lipid, glycogen, ions status and histological alterations through its rich flavonoids(b). According to the Panjab University, in testing of Apium graveolens L. (Apiaceae) and Hygrophila auriculata (K. Schum.) Heine (Syn. Astercantha auriculata Nees, Acanthaceae) used in Indian systems of medicine for the treatment of liver ailments, showed a significant hepatoprotective activity of the methanolic extract of the seeds against paracetamol and thioacetamide intoxication in rats(c). Other, in the study of the composition of Celery, chicory leaves, and barley grains, showed a positive effects in decreasing the elevation of liver enzymes (aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase) and blood lipids(d).
Ovarian Cysts And PCOS Elimination
Back to Researched articles - Points of view of Vitamins, Foods and Herbs
http://kylejnorton.blogspot.ca/p/blog-page_24.html
References
(a) [Chemical constituents of fresh celery].[Article in Chinese] by Zhou K1, Wu B, Zhuang Y, Ding L, Liu Z, Qiu F(PubMed)
(b) Hepatoprotective action of celery (Apium graveolens) leaves in acetaminophen-fed freshwater fish (Pangasius sutchi) by Shivashri C1, Rajarajeshwari T, Rajasekar P.(PubMed)
(c) Hepatoprotective activity of Apium graveolens and Hygrophila auriculata against paracetamol and thioacetamide intoxication in rats by Singh A1, Handa SS.(PubMed)
(d) Hepatoprotective effect of feeding celery leaves mixed with chicory leaves and barley grains to hypercholesterolemic rats by Abd El-Mageed NM.(PubMed)
Friday, 11 April 2014
Skin Lightening (Whitening) in Herbs, Foods and Antioxidants Points of View
Kyle J. Norton
Human skin pigmentation is the result of natural selection evolved to prevent damage to skin through regulation of ultraviolet radiated penetration depending to the production of melanin in the skin cells.
1. Hypo-pigment
a. Vitiligo is defined as a condition of destruction of cells that give your skin its color, causing white patches on your skin.
b. Albinism is a congenital disorder causes of complete or partial absence of pigment in the skin, hair and eyes as a result of restriction of the skin cells from producing melanin
2.Hyper pigment is a result of over production of pigments of certain cells in the skin, causing skin darkening in some area, such as tan or brown patches, commonly on the facial skin
3. Skin discoloring is a result of discoloring your skin in specific spots or very widespread
4. Chloasma is the appearance of brown patches of pigmentation on the forehead, cheeks, and neck
due to hormonal change during pregnancy.
5. Melasma happens to women who have fluctuation of hormones, are taking birth control pills and certain medications. with brownish-grayish patches on the skin, most often on the cheek.
Epidemiological studies, linking herbal medicine in skin lighting may have produced certain interest results(a)(b)(c).
A. The herbs
1. Ampelopsis japonica (Bai Lian)
Bai Lian is also known as Japanese Ampelopsis Root, the bitter, sweet, acrid and cool herb has been used in TCM to redice infection and to treat carbuncles, sores, scalding injuries, dysentery with blood, intestine pain, hemorrhoids as it clears Heat, expels toxins, resolves ulcers, promotes muscle regeneration, etc, by promoting the function of liver channel.
Ampelopsis japonica may process the property in treating skin hyperpigmentation disorders, such as melisma. According to the study at the Macao Polytechnic Institute, Linderagalactone c and (+)-n-methyllaurotetanine found in Ampelopsis japonica exhibited the strongest prospects in topical formulations, through high predicted tyrosinase binding scores and displayed good skin permeation properties in Surflex-Dock and the QSAR-based Dermal Permeability Coefficient Program (DERMWIN) and Skin Irritation Corrosion Rules Estimation Tool (SICRET) implemented in Toxtree.(1). The screening of 50 extracts from traditional Chinese medicines (TCM) used for tyrosinase activity-inhibiting agents, Ampelopsis japonica showed similar or greater ratio of cell growth IC(50) to cellular tyrosinase IC(50) when compared with other herbs(2).
2. Ginkgo biloba
Ginkgo biloba is oldest living tree species, genus Ginkgo, belonging to the family Ginkgoaceae, native to China, from temperate zone to subtropical zone and some parts of north America. It Has been used in traditional herbal medicine in treating impotence, memory loss,respiratory diseases, circulatory disorders and deafness as well as preventing drunkenness, and bedwetting.
Ginkgo biloba, one of the potent herb showed more advanced binding energies than the gold standard whitening agents, arbutin and kojic acid(1). Glycol extracts of ginkgo boiloba(F1A+M), may process of arbutin diffusion from the produced hydrogel formulations. According to Uniwersytet Medyczny w Łodzi, formulation containing glycol extract of ginkgo processed the most effective in arbutin release to the acceptor fluid through a semipermeable membrane (3). Other herbal extracts were also found to have a similar effect in promoting the process of arbutin release, including rosemary, sage and nettle(4).
3. Spicebush Root (Wu Yao)
Wu Yao is also known as Spicebush Root. The acrid and warm herb has been used in TCM as increased metabolism, antibiotic, anti-viral agent andto harmonize peristalsis of digestive tract, release intestinal gas, etc., as it moves Qi, warms the Kidneys. calms pain, etc. by enhancing the functions of lung, spleen, kidney and bladder.channels.
The study at Macao Polytechnic Institute, in the finding of herbal medicine used as tyrosinase inhibitors and for treatment of skin hyperpigmentation disorders, showed a promising result of
Spicebush Root's chemical constituents in tyrosinase binding scores and displayed good skin permeation properties and minimal potential for skin sensitization and irritation(5). Other study at the Institute of Chinese Materia Medica of Shanghai University of Traditional Chinese Medicine, found that Spicebush Root consists appreciable antityrosinase activity with more than 50% inhibition against mushroom tyrosinase activity(6).
4. Chinese gall (Wu Bei zi)
Wu Bei Zi is also known as Chinese Gall. The sour, tart and cold herb has been used in TCM to treat chronic cough, chronic diarrhea with or without infection, spermatorrhea, night sweating, bleeding not during menses, etc., as it restrains Lungs, moves Fire downwards, strengthens the Intestines andthe Essence, prevents sweating, stops bleeding, etc. by enhancing the functions of lung, large intestine and kidney channels.
Chinese gall extract in the testing against mushroom tyrosinase activity inhibition, using ultraviolet A (UVA) or alpha-melanocyte-stimulating hormone (alpha-MSH) to stimulate B16 cells showed a promising effect in inhibition of melanin biosynthesis associated with hyperpigmentation in a dose-dependent manner, according to National Chiayi University(7). In Mouse melanocyte cell lines, water extract of Galla Chinensis, showed to exhibit higher depigmentation activity, affecting lower tyrosinase activity(8).
5. Sargassum polycystum(Brown seaweed)
Sargassum polycystum, a type of brown seaweed, has been used for the treatment of skin-related disorders in traditional medicine. The ethanolic crude extract from Sargassum polycystum showed significant inhibition of melanogenesis through down activated cellular tyrosinase activity in B16F10 cells(9).
6. Nardostachys chinensis(Gan Song)
gan Song also known as Nardostachyos Root and Rhizome. The herb has been used in traditional Chinese medicine to treat melasma and lentigines, move Qi, calm pain, eliminate stagnation and invigorate the Spleen. According to Pusan National University, the active 20% methanol chromatographic fraction from the ethyl acetate layer (PPNC) showed to suppress the melanin synthesis s, through stimulated MEK/ERK phosphorylation and PI3K/Akt signaling with suppressing cAMP levels and subsequently stimulating MITF and TRPs down-regulation(10).
7. Cuscuta japonica(Tu Si Zi)
Tu Si Zi is also known as Dodder Seed. The acrid, sweet and neutral herb has been used in TCM to treat psychological disorder, calm the fetus, prevent miscarriage, etc. as it tonifies kidneys, liver and spleen, improves yin, etc. by enhancing the functions of liver and kidney channels.
According to Pusan National University, the aqueous fraction from Semen cuscutae (AFSC) showed a marked reduction of melanin synthesis and tyrosinase activity in α-MSH-stimulated B16F10 cells through inhibited p38 MAPK phosphorylation with suppressed cAMP levels and subsequently down-regulate MITF and TRP expression(11).
8. Turmeric
Turmeric is a perennial plant in the genus Curcuma, belonging to the family Zingiberaceae, native to tropical South Asia. The herb has been used in trditional medicine as anti-oxidant, hypoglycemic, colorant, antiseptic, wound healing agent, and to treat flatulence, bloating, and appetite loss, ulcers, eczema, inflammations, etc.
Curcumin, a major chemical constituents of turmeric, showed to suppress alpha-MSH-stimulated melanogenesis probably through involvement of down-regulation of MITF and its downstream signal pathway via the activation of MEK/ERK or PI3K/Akt(12). Other study conducted by Pusan National University, also showed partial purification from C. longa (PPC) reduced melanin synthesis via MITF and its downstream signal pathway including tyrosinase and TRPs in alpha-MSH-induced melanogenesis, through activation of the MEK/ERK or Akt(13).
9. Fermenting red ginseng
Ginseng is a slow-growing perennial plants with fleshy roots, the genus Panax, belonging to the family Araliaceae. Depending to the climate where it grows, ginseng can be classified mainly into Panax ginseng Asian ginseng (root), Red ginseng(RG), wild ginseng, American ginseng (root).
Fermented red ginseng (FRG), increased contents of ginsenoside metabolites, such as Rg3, Rg5, Rk1, compound K, Rh1, F2, Rg2, and flavonoids content showed to increased anti-wrinkle efficacy, whitening efficacy, and reduced toxicological potency compared to RG(13a)
B. The foods
1. Long Yan (Longan)
Long Yan is also known as longan. The slightly sweet and neutral herb (fruit) has been used in TCM as notification after illnesses, neurasthenia, forgetfulness, palpitation, insomnia, etc. as it tonifies Heart and Spleen, benefits Qi and Blood, etc. Longan seeds containing high levels of polyphenolic compounds such as corilagin, gallic acid and ellagic acid, may be potential sources of potent natural dietary antioxidants in the application as a new natural skin-whitening agent(14), through its higher antioxidant and antityrosinase activities(15).
2. Green tea
Green tea contains more amount of antioxidants than any drinks or food with the same volume, and is the leaves of Camellia sinensis, undergone minimal oxidation during processing, originated from China. Green tea has been a precious drink in traditional Chinese culture and used exceptional in socialization for more than 4000 thousand years. Because of their health benefits, they have been cultivated for commercial purposes all over the world.
Green tea polyphenol may be used as a natural ingredient with excellent physiological functions for the human skin through cosmetic or food composition(16). Other study of the effects of tea polysaccharides (TPS) and polyphenols (TPP) on skin, showed to exhibit the moisture absorption and retention, sunscreen, promoting the proliferation of fibroblast cells, and tyrosinase inhibitory effect(17).
3. Cinnamon
Cinnamon is a spice derived from the inner bark of tree, native to South East Asia, of over 300 species of the genus Cinnamomum, belonging to the family Lauraceae.. The herb has been use in herbal and traditional medicine as anti-fungal and bacteria level to improve reproductive organ, prevent flatulence and intestinal cramping, treat indigestion, diarrhea, bad breath, headache, migraine, etc.
The essential oil extracted from Cinnamomum cassia Presl (CC-EO) and its major component, cinnamaldehyde, possessed potent anti-tyrosinase and anti-melanogenic activities through theirs antioxidant activities and may be a potential source of skin-whitening agents(18)
4. Red Onion((Allium cepa)
The onion is a plants in the genus Allium, belongs to the family Alliaceae, a close relation of garlic. It It is often called the "king of vegetables" because of its pungent taste and found in a large number of recipes and preparations spanning almost the totality of the world's cultures. Depending on the variety, an onion can be sharp, spicy, tangy, pungent, mild or sweet.
Quercetin 4'-O-β-D-glucopyranoside was isolated from the dried skin of A. cepa. showed tyrosinase inhibitory activity as it possessed ingredients with potential for skin-whitening cosmetics(19).
5. Ginger
Ginger (Zingiber officinale) or ginger root is the genus Zingiber, belonging to the family Zingiberaceae, native to Tamil. It has been used in traditional and Chinese medicine to treat dyspepsia, gastroparesis, constipation, edema, difficult urination, colic, etc.
[6]-Gingerol, an active component of ginger not only (25-100 µM) effectively suppressed murine tyrosinase activity and decreased the amount of melanin, and the intracellular reactive oxygen species (ROS) level in a dose-dependent manner(20). the University of Malaya, in the study of the effects of [8]-Gingerol, another active component of Zinger, found that [8]-gingerol (5-100μM) not only effectively suppress intracellular tyrosinase activity and decrease the amount of melanin in B16F10 and B16F1 cells, but also fectively decreased intracellular reactive species (RS) and reactive oxygen species (ROS) levels at the same dose manner, probably through down-regulation of both mitogen-activated protein kinases (MAPK) and protein kinase A (PKA) signaling pathways or through its antioxidant properties(21).
6. Pomegranate
Pomegranates is a fruit-bearing small tree, genus Punica, belonging to family Lythraceae, native to Iran but has been cultivated in Asian since ancient time.
Pomegranate extract (PE) containing 90% ellagic acid administered orally, inhibited UV-induced skin pigmentation on the back of brownish guinea pigs with skin-whitening effect similar to those fed with L-ascorbic acid(21a) and moderate effect in human skin(21b).
C. The Antioxidants
C.1. Free radical scavengers
Suggestions of antioxidants, may be next potential agent in inhibition of tyrosinase activity and reduction of the melanin content in cells(22)(22a)
1. Vitamin C,
Vitamin C also known as L-ascorbic acid, is a water-soluble vitamin, found in fresh fruits, berries and green vegetables. It is best known for its free radical scavengers activity and regenerating oxidized vitamin E for immune support.
Ascorbic acid (AA) has been well known as a skin whitening agent, according to the Mahidol University, AA showed to inhibit UVA-mediated catalase (CAT) inactivation, glutathione (GSH) depletion, oxidant formation and NO production through suppression of eNOS and iNOS mRNA via its antioxidant defense(23). In the comparison of orchid extracts and 3% vitamin C derivative formulated, researchers at the Osaka National Hospital, National Hospital Organizationfound that the orchid-rich plant extracts possess efficacy similar to vitamin C derivative in whitening the skin as well as melasma and lentigo senilis on the face of Japanese women(24). Other study suggested that topical application of the composition of L(+) lactic acid supplemented with ascorbic acid (1%) produced a whitening effect and a modest preferential lightening of age spots which becomes apparent after three months, through demonstrated clinically by the test panelists, and trained clinicians, and with objective instrumental methods(25).
2. Vitamin E
Vitamin E, a fat soluble vitamin, consisting eight different variants (alpha-, beta-, gamma-, and delta-tocopherol and alpha-, beta-, gamma-, and delta-tocotrienol) with varying levels of biological activity(26), found abundantly in corn oil, soybean oil, margarine, wheat germ oil, sunflower,safflower oils, etc. plays an important role in neurological functions and inhibition of platelet aggregation, regulation of enzymatic activity, free radical scavenger, etc..
The study in comparison of the effects of vitamin E analogues (d-alpha-, dl-alpha-, d-beta-, d-gamma-, and d-delta-tocopherols, d-alpha- and dl-alpha-tocopheryl acetates) and 2,2,5,7,8-pentamethyl-6-hydroxychroman (PMC) on melanogenesis in mouse B16 melanoma cells, showed a positive effects of d-beta-tocopherol and d-gamma-tocopherol, 2 variants of vitamin E, in skin whitening with lower skin toxicity, as well as improved skin pigmentation such as skin spots and freckles caused by UV exposure(27). According to Kobe University School of Medicine, alpha-Tocopheryl ferulate (alpha-TF), a compound containing alpha-T (a variant of vitamin E) and ferulic acid exhibited an efficient whitening effects, through suppressed melanogenesis and inhibited biological reactions induced by reactive oxygen species(28)(29).
C.2. The antioxidants
1. Resveratrol
Resveratrol is a phytochemical in the class of Stilbenoids, found abundantly in skins and seed of grape wine, nuts, peanuts, etc.
Piceatannol, a derivative of resveratrol exerted its antimelanogenic action through the combined effect of antioxidative property
and suppressed RS generation while increasing the GSH/GSSG ratio(30). According to 1Johnson &
Johnson Skin Research Center, resveratrol may be a potential cosmetic skin whitening agent through
reduced microphthalmia-associated transcription factor and tyrosinase promoter activities(31).
4. Glutathione
Glutathione (GSH), an antioxidants plays an important role in protecting cells against the free radicals
and ixidative stress, may be a potential agent in the management of hyperpigmentation(32). According
to the Chulalongkorn University, orally administered glutathione, 500 mg per day for 4 weeks, was found
effectively in reduced melanin indices consistently in all subjects(33) and may be used in the treatment
of pigmentary disorders.(34). Other study also indicated the effectiveness of glutathione in regulating
melanocytotoxicity and depigmenting potency of N-acetyl-4-S-CAP in black and yellow mice(35)
Taken altogether, although with scattered data, the herbs, foods, and antioxidants indicated above may potent in exhibition of the depigment and lightening (whitening) effects, through inhibited, and biological reactions induced by reactive oxygen species and suppressed melanogenesis and intracellular tyrosinase activity. As always, all articles written by Kyle J. Norton are for information & education only, please consult your Doctor & Related field specialist before applying.
Ovarian Cysts And PCOS Elimination
Back to Most common Types of Cancer http://kylejnorton.blogspot.ca/p/blog-page.html
Back to Kyle J. Norton Home page http://kylejnorton.blogspot.ca
References
(a) Tyrosinase modulation by five Rwandese herbal medicines traditionally used for skin treatment by Kamagaju L1, Morandini R, Bizuru E, Nyetera P, Nduwayezu JB, Stévigny C, Ghanem G, Duez P.(PubMed)
(b) An ethnobotanical survey of medicinal plants used in Rwanda for voluntary depigmentation by Kamagaju L1, Bizuru E, Minani V, Morandini R, Stévigny C, Ghanem G, Duez P.(PubMed)
(c) Tyrosinase inhibition by extracts and constituents of Sideroxylon inerme L. stem bark, used in South Africa for skin lightening by Momtaz S1, Mapunya BM, Houghton PJ, Edgerly C, Hussein A, Naidoo S, Lall N.(PubMed))
(1) In silico prediction of the cosmetic whitening effects of naturally occurring lead compounds by Fong P1, Tong HH.(PubMed)
(2) Screening of Chinese herbal medicines for antityrosinase activity in a cell free system and B16 cells by Ye Y1, Chou GX, Mu DD, Wang H, Chu JH, Leung AK, Fong WF, Yu ZL(PubMed)
(3) [Glycol plant extracts in the prescription of topical skin-whitening hydrogels].[Article in Polish] by Piechota-Urbańska M1, Berner-Strzelczyk A.(PubMed)
(4) [The effect of dry standardized plant extracts on the process of arbutin release from topical preparations produced on Carbopol base].[Article in Polish] by Piechota-Urbańska M.(PubMed)
(5) In silico prediction of the cosmetic whitening effects of naturally occurring lead compounds by Fong P1, Tong HH.(PubMed)
(6) Screening of Chinese herbal medicines for antityrosinase activity in a cell free system and B16 cells by Ye Y1, Chou GX, Mu DD, Wang H, Chu JH, Leung AK, Fong WF, Yu ZL.(PubMed)
(7) Melanogenesis inhibition by gallotannins from Chinese galls in B16 mouse melanoma cells by Chen LG1, Chang WL, Lee CJ, Lee LT, Shih CM, Wang CC.(PubMed)
(8) Depigmentation of melanocytes by the treatment of extracts from traditional Chinese herbs: a cell culture assay by Zhong S1, Wu Y, Soo-Mi A, Zhao J, Wang K, Yang S, Jae-Ho Y, Zhu X.(PubMed)
(9) Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells by Chan YY1, Kim KH, Cheah SH(PubMed)
(10) Partially purified components of Nardostachys chinensis suppress melanin synthesis through ERK and Akt signaling pathway with cAMP down-regulation in B16F10 cells by Jang JY1, Kim HN, Kim YR, Choi WY, Choi YH, Shin HK, Choi BT.(PubMed)
(11) Aqueous fraction from Cuscuta japonica seed suppresses melanin synthesis through inhibition of the p38 mitogen-activated protein kinase signaling pathway in B16F10 cells by Jang JY1, Kim HN, Kim YR, Choi YH, Kim BW, Shin HK, Choi BT.(PubMed)
(12) Curcumin suppresses alpha-melanocyte stimulating hormone-stimulated melanogenesis in B16F10 cells by Lee JH1, Jang JY, Park C, Kim BW, Choi YH, Choi BT.(PubMed)
(13) Partially purified Curcuma longa inhibits alpha-melanocyte-stimulating hormone-stimulated melanogenesis through extracellular signal-regulated kinase or Akt activation-mediated signalling in B16F10 cells by Jang JY1, Lee JH, Jeong SY, Chung KT, Choi YH, Choi BT.(PubMed)
(13a) Fermenting red ginseng enhances its safety and efficacy as a novel skin care anti-aging ingredient: in vitro and animal study by Lee HS1, Kim MR, Park Y, Park HJ, Chang UJ, Kim SY, Suh HJ.(PubMed)
(14) Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract by Rangkadilok N1, Sitthimonchai S, Worasuttayangkurn L, Mahidol C, Ruchirawat M, Satayavivad J.(PubMed)
(15) Enhanced antioxidant and antityrosinase activities of longan fruit pericarp by ultra-high-pressure-assisted extraction by rasad KN1, Yang B, Shi J, Yu C, Zhao M, Xue S, Jiang Y.(PubMed)
(16) Physiological activity of irradiated green tea polyphenol on the human skin by An BJ1, Kwak JH, Son JH, Park JM, Lee JY, Park TS, Kim SY, Kim YS, Jo C, Byun MW.(PubMed)
(17) Protective effects of tea polysaccharides and polyphenols on skin by Wei X1, Liu Y, Xiao J, Wang Y.(PubMed)
(18) Cinnamomum cassia essential oil inhibits α-MSH-induced melanin production and oxidative stress in murine B16 melanoma cells by Chou ST1, Chang WL, Chang CT, Hsu SL, Lin YC, Shih Y.(PubMed)
(19) Tyrosinase inhibitory effect of quercetin 4'-O-β-D-glucopyranoside from dried skin of red onion (Allium cepa) by Arung ET1, Wijaya Kusuma I, Shimizu K, Kondo R.(PubMed)
(20) Inhibitory effect of [6]-gingerol on melanogenesis in B16F10 melanoma cells and a possible mechanism of action by Huang HC1, Chiu SH, Chang TM.(PubMed)
(21) [8]-Gingerol inhibits melanogenesis in murine melanoma cells through down-regulation of the MAPK and PKA signal pathways by Huang HC1, Chou YC, Wu CY, Chang TM.(PubMed)
(21a) Inhibitory effect of an ellagic acid-rich pomegranate extract on tyrosinase activity and ultraviolet-induced pigmentation by Yoshimura M1, Watanabe Y, Kasai K, Yamakoshi J, Koga T.(PubMed)
(21b) Effects of oral administration of ellagic acid-rich pomegranate extract on ultraviolet-induced pigmentation in the human skin by Kasai K1, Yoshimura M, Koga T, Arii M, Kawasaki S.(PubMed)
(22) Biofunctional Constituents from Liriodendron tulipifera with Antioxidants and Anti-Melanogenic Properties by Li WJ1, Lin YC, Wu PF, Wen ZH, Liu PL, Chen CY, Wang HM.(PubMed)
(22a) The effects of areca catechu L extract on anti-inflammation and anti-melanogenesis by Lee KK1, Choi JD.(PubMed)
(23) Inhibition of UVA-mediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system by Panich U1, Tangsupa-a-nan V, Onkoksoong T, Kongtaphan K, Kasetsinsombat K, Akarasereenont P, Wongkajornsilp A.(PubMed)
(24) \Whitening efficacy of plant extracts including orchid extracts on Japanese female skin with melasma and lentigo senilis by Tadokoro T1, Bonté F, Archambault JC, Cauchard JH, Neveu M, Ozawa K, Noguchi F, Ikeda A, Nagamatsu M, Shinn S.(PubMed)
(25) The effects of topical l(+) lactic Acid and ascorbic Acid on skin whitening by Smith WP.(PubMed)
(26) Traber MG. Vitamin E. In: Shils ME, Shike M, Ross AC, Caballero B, Cousins R, eds. Modern Nutrition in Health and Disease. 10th ed. Baltimore, MD: Lippincott Williams & Wilkins, 2006;396-411.
(27) Comparison of the inhibitory effects of vitamin E analogues on melanogenesis in mouse B16 melanoma cells by Kamei Y1, Otsuka Y, Abe K.(PubMed)
(28) The depigmenting effect of alpha-tocopheryl ferulate on human melanoma cells by Funasaka Y1, Chakraborty AK, Komoto M, Ohashi A, Ichihashi M.(PubMed)
(29) Depigmenting effect of alpha-tocopheryl ferulate on normal human melanocytes by Funasaka Y1, Komoto M, Ichihashi M.(PubMed)
(30) Piceatannol inhibits melanogenesis by its antioxidative actions by Yokozawa T1, Kim YJ.(PubMed)
(31) Modulation of microphthalmia-associated transcription factor gene expression alters skin pigmentation by Lin CB1, Babiarz L, Liebel F, Roydon Price E, Kizoulis M, Gendimenico GJ, Fisher DE, Seiberg M.(PubMed)
(32) Natural ingredients for darker skin types: growing options for hyperpigmentation by Alexis AF Blackcloud P.(PubMed)
(33) Glutathione as an oral whitening agent: a randomized, double-blind, placebo-controlled study by Arjinpathana N1, Asawanonda P.(PubMed)
(34) Glutathione as a depigmenting agent: an overview by Villarama CD1, Maibach HI.(PubMed)
(35) Glutathione plays a key role in the depigmenting and melanocytotoxic action of N-acetyl-4-S-cysteaminylphenol in black and yellow hair follicles by Alena F1, Dixon W, Thomas P, Jimbow K.(PubMed)
Human skin pigmentation is the result of natural selection evolved to prevent damage to skin through regulation of ultraviolet radiated penetration depending to the production of melanin in the skin cells.
1. Hypo-pigment
a. Vitiligo is defined as a condition of destruction of cells that give your skin its color, causing white patches on your skin.
b. Albinism is a congenital disorder causes of complete or partial absence of pigment in the skin, hair and eyes as a result of restriction of the skin cells from producing melanin
2.Hyper pigment is a result of over production of pigments of certain cells in the skin, causing skin darkening in some area, such as tan or brown patches, commonly on the facial skin
3. Skin discoloring is a result of discoloring your skin in specific spots or very widespread
4. Chloasma is the appearance of brown patches of pigmentation on the forehead, cheeks, and neck
due to hormonal change during pregnancy.
5. Melasma happens to women who have fluctuation of hormones, are taking birth control pills and certain medications. with brownish-grayish patches on the skin, most often on the cheek.
Epidemiological studies, linking herbal medicine in skin lighting may have produced certain interest results(a)(b)(c).
A. The herbs
1. Ampelopsis japonica (Bai Lian)
Bai Lian is also known as Japanese Ampelopsis Root, the bitter, sweet, acrid and cool herb has been used in TCM to redice infection and to treat carbuncles, sores, scalding injuries, dysentery with blood, intestine pain, hemorrhoids as it clears Heat, expels toxins, resolves ulcers, promotes muscle regeneration, etc, by promoting the function of liver channel.
Ampelopsis japonica may process the property in treating skin hyperpigmentation disorders, such as melisma. According to the study at the Macao Polytechnic Institute, Linderagalactone c and (+)-n-methyllaurotetanine found in Ampelopsis japonica exhibited the strongest prospects in topical formulations, through high predicted tyrosinase binding scores and displayed good skin permeation properties in Surflex-Dock and the QSAR-based Dermal Permeability Coefficient Program (DERMWIN) and Skin Irritation Corrosion Rules Estimation Tool (SICRET) implemented in Toxtree.(1). The screening of 50 extracts from traditional Chinese medicines (TCM) used for tyrosinase activity-inhibiting agents, Ampelopsis japonica showed similar or greater ratio of cell growth IC(50) to cellular tyrosinase IC(50) when compared with other herbs(2).
2. Ginkgo biloba
Ginkgo biloba is oldest living tree species, genus Ginkgo, belonging to the family Ginkgoaceae, native to China, from temperate zone to subtropical zone and some parts of north America. It Has been used in traditional herbal medicine in treating impotence, memory loss,respiratory diseases, circulatory disorders and deafness as well as preventing drunkenness, and bedwetting.
Ginkgo biloba, one of the potent herb showed more advanced binding energies than the gold standard whitening agents, arbutin and kojic acid(1). Glycol extracts of ginkgo boiloba(F1A+M), may process of arbutin diffusion from the produced hydrogel formulations. According to Uniwersytet Medyczny w Łodzi, formulation containing glycol extract of ginkgo processed the most effective in arbutin release to the acceptor fluid through a semipermeable membrane (3). Other herbal extracts were also found to have a similar effect in promoting the process of arbutin release, including rosemary, sage and nettle(4).
3. Spicebush Root (Wu Yao)
Wu Yao is also known as Spicebush Root. The acrid and warm herb has been used in TCM as increased metabolism, antibiotic, anti-viral agent andto harmonize peristalsis of digestive tract, release intestinal gas, etc., as it moves Qi, warms the Kidneys. calms pain, etc. by enhancing the functions of lung, spleen, kidney and bladder.channels.
The study at Macao Polytechnic Institute, in the finding of herbal medicine used as tyrosinase inhibitors and for treatment of skin hyperpigmentation disorders, showed a promising result of
Spicebush Root's chemical constituents in tyrosinase binding scores and displayed good skin permeation properties and minimal potential for skin sensitization and irritation(5). Other study at the Institute of Chinese Materia Medica of Shanghai University of Traditional Chinese Medicine, found that Spicebush Root consists appreciable antityrosinase activity with more than 50% inhibition against mushroom tyrosinase activity(6).
4. Chinese gall (Wu Bei zi)
Wu Bei Zi is also known as Chinese Gall. The sour, tart and cold herb has been used in TCM to treat chronic cough, chronic diarrhea with or without infection, spermatorrhea, night sweating, bleeding not during menses, etc., as it restrains Lungs, moves Fire downwards, strengthens the Intestines andthe Essence, prevents sweating, stops bleeding, etc. by enhancing the functions of lung, large intestine and kidney channels.
Chinese gall extract in the testing against mushroom tyrosinase activity inhibition, using ultraviolet A (UVA) or alpha-melanocyte-stimulating hormone (alpha-MSH) to stimulate B16 cells showed a promising effect in inhibition of melanin biosynthesis associated with hyperpigmentation in a dose-dependent manner, according to National Chiayi University(7). In Mouse melanocyte cell lines, water extract of Galla Chinensis, showed to exhibit higher depigmentation activity, affecting lower tyrosinase activity(8).
5. Sargassum polycystum(Brown seaweed)
Sargassum polycystum, a type of brown seaweed, has been used for the treatment of skin-related disorders in traditional medicine. The ethanolic crude extract from Sargassum polycystum showed significant inhibition of melanogenesis through down activated cellular tyrosinase activity in B16F10 cells(9).
6. Nardostachys chinensis(Gan Song)
gan Song also known as Nardostachyos Root and Rhizome. The herb has been used in traditional Chinese medicine to treat melasma and lentigines, move Qi, calm pain, eliminate stagnation and invigorate the Spleen. According to Pusan National University, the active 20% methanol chromatographic fraction from the ethyl acetate layer (PPNC) showed to suppress the melanin synthesis s, through stimulated MEK/ERK phosphorylation and PI3K/Akt signaling with suppressing cAMP levels and subsequently stimulating MITF and TRPs down-regulation(10).
7. Cuscuta japonica(Tu Si Zi)
Tu Si Zi is also known as Dodder Seed. The acrid, sweet and neutral herb has been used in TCM to treat psychological disorder, calm the fetus, prevent miscarriage, etc. as it tonifies kidneys, liver and spleen, improves yin, etc. by enhancing the functions of liver and kidney channels.
According to Pusan National University, the aqueous fraction from Semen cuscutae (AFSC) showed a marked reduction of melanin synthesis and tyrosinase activity in α-MSH-stimulated B16F10 cells through inhibited p38 MAPK phosphorylation with suppressed cAMP levels and subsequently down-regulate MITF and TRP expression(11).
8. Turmeric
Turmeric is a perennial plant in the genus Curcuma, belonging to the family Zingiberaceae, native to tropical South Asia. The herb has been used in trditional medicine as anti-oxidant, hypoglycemic, colorant, antiseptic, wound healing agent, and to treat flatulence, bloating, and appetite loss, ulcers, eczema, inflammations, etc.
Curcumin, a major chemical constituents of turmeric, showed to suppress alpha-MSH-stimulated melanogenesis probably through involvement of down-regulation of MITF and its downstream signal pathway via the activation of MEK/ERK or PI3K/Akt(12). Other study conducted by Pusan National University, also showed partial purification from C. longa (PPC) reduced melanin synthesis via MITF and its downstream signal pathway including tyrosinase and TRPs in alpha-MSH-induced melanogenesis, through activation of the MEK/ERK or Akt(13).
9. Fermenting red ginseng
Ginseng is a slow-growing perennial plants with fleshy roots, the genus Panax, belonging to the family Araliaceae. Depending to the climate where it grows, ginseng can be classified mainly into Panax ginseng Asian ginseng (root), Red ginseng(RG), wild ginseng, American ginseng (root).
Fermented red ginseng (FRG), increased contents of ginsenoside metabolites, such as Rg3, Rg5, Rk1, compound K, Rh1, F2, Rg2, and flavonoids content showed to increased anti-wrinkle efficacy, whitening efficacy, and reduced toxicological potency compared to RG(13a)
B. The foods
1. Long Yan (Longan)
Long Yan is also known as longan. The slightly sweet and neutral herb (fruit) has been used in TCM as notification after illnesses, neurasthenia, forgetfulness, palpitation, insomnia, etc. as it tonifies Heart and Spleen, benefits Qi and Blood, etc. Longan seeds containing high levels of polyphenolic compounds such as corilagin, gallic acid and ellagic acid, may be potential sources of potent natural dietary antioxidants in the application as a new natural skin-whitening agent(14), through its higher antioxidant and antityrosinase activities(15).
2. Green tea
Green tea contains more amount of antioxidants than any drinks or food with the same volume, and is the leaves of Camellia sinensis, undergone minimal oxidation during processing, originated from China. Green tea has been a precious drink in traditional Chinese culture and used exceptional in socialization for more than 4000 thousand years. Because of their health benefits, they have been cultivated for commercial purposes all over the world.
Green tea polyphenol may be used as a natural ingredient with excellent physiological functions for the human skin through cosmetic or food composition(16). Other study of the effects of tea polysaccharides (TPS) and polyphenols (TPP) on skin, showed to exhibit the moisture absorption and retention, sunscreen, promoting the proliferation of fibroblast cells, and tyrosinase inhibitory effect(17).
3. Cinnamon
Cinnamon is a spice derived from the inner bark of tree, native to South East Asia, of over 300 species of the genus Cinnamomum, belonging to the family Lauraceae.. The herb has been use in herbal and traditional medicine as anti-fungal and bacteria level to improve reproductive organ, prevent flatulence and intestinal cramping, treat indigestion, diarrhea, bad breath, headache, migraine, etc.
The essential oil extracted from Cinnamomum cassia Presl (CC-EO) and its major component, cinnamaldehyde, possessed potent anti-tyrosinase and anti-melanogenic activities through theirs antioxidant activities and may be a potential source of skin-whitening agents(18)
4. Red Onion((Allium cepa)
The onion is a plants in the genus Allium, belongs to the family Alliaceae, a close relation of garlic. It It is often called the "king of vegetables" because of its pungent taste and found in a large number of recipes and preparations spanning almost the totality of the world's cultures. Depending on the variety, an onion can be sharp, spicy, tangy, pungent, mild or sweet.
Quercetin 4'-O-β-D-glucopyranoside was isolated from the dried skin of A. cepa. showed tyrosinase inhibitory activity as it possessed ingredients with potential for skin-whitening cosmetics(19).
5. Ginger
Ginger (Zingiber officinale) or ginger root is the genus Zingiber, belonging to the family Zingiberaceae, native to Tamil. It has been used in traditional and Chinese medicine to treat dyspepsia, gastroparesis, constipation, edema, difficult urination, colic, etc.
[6]-Gingerol, an active component of ginger not only (25-100 µM) effectively suppressed murine tyrosinase activity and decreased the amount of melanin, and the intracellular reactive oxygen species (ROS) level in a dose-dependent manner(20). the University of Malaya, in the study of the effects of [8]-Gingerol, another active component of Zinger, found that [8]-gingerol (5-100μM) not only effectively suppress intracellular tyrosinase activity and decrease the amount of melanin in B16F10 and B16F1 cells, but also fectively decreased intracellular reactive species (RS) and reactive oxygen species (ROS) levels at the same dose manner, probably through down-regulation of both mitogen-activated protein kinases (MAPK) and protein kinase A (PKA) signaling pathways or through its antioxidant properties(21).
6. Pomegranate
Pomegranates is a fruit-bearing small tree, genus Punica, belonging to family Lythraceae, native to Iran but has been cultivated in Asian since ancient time.
Pomegranate extract (PE) containing 90% ellagic acid administered orally, inhibited UV-induced skin pigmentation on the back of brownish guinea pigs with skin-whitening effect similar to those fed with L-ascorbic acid(21a) and moderate effect in human skin(21b).
C. The Antioxidants
C.1. Free radical scavengers
Suggestions of antioxidants, may be next potential agent in inhibition of tyrosinase activity and reduction of the melanin content in cells(22)(22a)
1. Vitamin C,
Vitamin C also known as L-ascorbic acid, is a water-soluble vitamin, found in fresh fruits, berries and green vegetables. It is best known for its free radical scavengers activity and regenerating oxidized vitamin E for immune support.
Ascorbic acid (AA) has been well known as a skin whitening agent, according to the Mahidol University, AA showed to inhibit UVA-mediated catalase (CAT) inactivation, glutathione (GSH) depletion, oxidant formation and NO production through suppression of eNOS and iNOS mRNA via its antioxidant defense(23). In the comparison of orchid extracts and 3% vitamin C derivative formulated, researchers at the Osaka National Hospital, National Hospital Organizationfound that the orchid-rich plant extracts possess efficacy similar to vitamin C derivative in whitening the skin as well as melasma and lentigo senilis on the face of Japanese women(24). Other study suggested that topical application of the composition of L(+) lactic acid supplemented with ascorbic acid (1%) produced a whitening effect and a modest preferential lightening of age spots which becomes apparent after three months, through demonstrated clinically by the test panelists, and trained clinicians, and with objective instrumental methods(25).
2. Vitamin E
Vitamin E, a fat soluble vitamin, consisting eight different variants (alpha-, beta-, gamma-, and delta-tocopherol and alpha-, beta-, gamma-, and delta-tocotrienol) with varying levels of biological activity(26), found abundantly in corn oil, soybean oil, margarine, wheat germ oil, sunflower,safflower oils, etc. plays an important role in neurological functions and inhibition of platelet aggregation, regulation of enzymatic activity, free radical scavenger, etc..
The study in comparison of the effects of vitamin E analogues (d-alpha-, dl-alpha-, d-beta-, d-gamma-, and d-delta-tocopherols, d-alpha- and dl-alpha-tocopheryl acetates) and 2,2,5,7,8-pentamethyl-6-hydroxychroman (PMC) on melanogenesis in mouse B16 melanoma cells, showed a positive effects of d-beta-tocopherol and d-gamma-tocopherol, 2 variants of vitamin E, in skin whitening with lower skin toxicity, as well as improved skin pigmentation such as skin spots and freckles caused by UV exposure(27). According to Kobe University School of Medicine, alpha-Tocopheryl ferulate (alpha-TF), a compound containing alpha-T (a variant of vitamin E) and ferulic acid exhibited an efficient whitening effects, through suppressed melanogenesis and inhibited biological reactions induced by reactive oxygen species(28)(29).
C.2. The antioxidants
1. Resveratrol
Resveratrol is a phytochemical in the class of Stilbenoids, found abundantly in skins and seed of grape wine, nuts, peanuts, etc.
Piceatannol, a derivative of resveratrol exerted its antimelanogenic action through the combined effect of antioxidative property
and suppressed RS generation while increasing the GSH/GSSG ratio(30). According to 1Johnson &
Johnson Skin Research Center, resveratrol may be a potential cosmetic skin whitening agent through
reduced microphthalmia-associated transcription factor and tyrosinase promoter activities(31).
4. Glutathione
Glutathione (GSH), an antioxidants plays an important role in protecting cells against the free radicals
and ixidative stress, may be a potential agent in the management of hyperpigmentation(32). According
to the Chulalongkorn University, orally administered glutathione, 500 mg per day for 4 weeks, was found
effectively in reduced melanin indices consistently in all subjects(33) and may be used in the treatment
of pigmentary disorders.(34). Other study also indicated the effectiveness of glutathione in regulating
melanocytotoxicity and depigmenting potency of N-acetyl-4-S-CAP in black and yellow mice(35)
Taken altogether, although with scattered data, the herbs, foods, and antioxidants indicated above may potent in exhibition of the depigment and lightening (whitening) effects, through inhibited, and biological reactions induced by reactive oxygen species and suppressed melanogenesis and intracellular tyrosinase activity. As always, all articles written by Kyle J. Norton are for information & education only, please consult your Doctor & Related field specialist before applying.
Ovarian Cysts And PCOS Elimination
Back to Most common Types of Cancer http://kylejnorton.blogspot.ca/p/blog-page.html
Back to Kyle J. Norton Home page http://kylejnorton.blogspot.ca
References
(a) Tyrosinase modulation by five Rwandese herbal medicines traditionally used for skin treatment by Kamagaju L1, Morandini R, Bizuru E, Nyetera P, Nduwayezu JB, Stévigny C, Ghanem G, Duez P.(PubMed)
(b) An ethnobotanical survey of medicinal plants used in Rwanda for voluntary depigmentation by Kamagaju L1, Bizuru E, Minani V, Morandini R, Stévigny C, Ghanem G, Duez P.(PubMed)
(c) Tyrosinase inhibition by extracts and constituents of Sideroxylon inerme L. stem bark, used in South Africa for skin lightening by Momtaz S1, Mapunya BM, Houghton PJ, Edgerly C, Hussein A, Naidoo S, Lall N.(PubMed))
(1) In silico prediction of the cosmetic whitening effects of naturally occurring lead compounds by Fong P1, Tong HH.(PubMed)
(2) Screening of Chinese herbal medicines for antityrosinase activity in a cell free system and B16 cells by Ye Y1, Chou GX, Mu DD, Wang H, Chu JH, Leung AK, Fong WF, Yu ZL(PubMed)
(3) [Glycol plant extracts in the prescription of topical skin-whitening hydrogels].[Article in Polish] by Piechota-Urbańska M1, Berner-Strzelczyk A.(PubMed)
(4) [The effect of dry standardized plant extracts on the process of arbutin release from topical preparations produced on Carbopol base].[Article in Polish] by Piechota-Urbańska M.(PubMed)
(5) In silico prediction of the cosmetic whitening effects of naturally occurring lead compounds by Fong P1, Tong HH.(PubMed)
(6) Screening of Chinese herbal medicines for antityrosinase activity in a cell free system and B16 cells by Ye Y1, Chou GX, Mu DD, Wang H, Chu JH, Leung AK, Fong WF, Yu ZL.(PubMed)
(7) Melanogenesis inhibition by gallotannins from Chinese galls in B16 mouse melanoma cells by Chen LG1, Chang WL, Lee CJ, Lee LT, Shih CM, Wang CC.(PubMed)
(8) Depigmentation of melanocytes by the treatment of extracts from traditional Chinese herbs: a cell culture assay by Zhong S1, Wu Y, Soo-Mi A, Zhao J, Wang K, Yang S, Jae-Ho Y, Zhu X.(PubMed)
(9) Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells by Chan YY1, Kim KH, Cheah SH(PubMed)
(10) Partially purified components of Nardostachys chinensis suppress melanin synthesis through ERK and Akt signaling pathway with cAMP down-regulation in B16F10 cells by Jang JY1, Kim HN, Kim YR, Choi WY, Choi YH, Shin HK, Choi BT.(PubMed)
(11) Aqueous fraction from Cuscuta japonica seed suppresses melanin synthesis through inhibition of the p38 mitogen-activated protein kinase signaling pathway in B16F10 cells by Jang JY1, Kim HN, Kim YR, Choi YH, Kim BW, Shin HK, Choi BT.(PubMed)
(12) Curcumin suppresses alpha-melanocyte stimulating hormone-stimulated melanogenesis in B16F10 cells by Lee JH1, Jang JY, Park C, Kim BW, Choi YH, Choi BT.(PubMed)
(13) Partially purified Curcuma longa inhibits alpha-melanocyte-stimulating hormone-stimulated melanogenesis through extracellular signal-regulated kinase or Akt activation-mediated signalling in B16F10 cells by Jang JY1, Lee JH, Jeong SY, Chung KT, Choi YH, Choi BT.(PubMed)
(13a) Fermenting red ginseng enhances its safety and efficacy as a novel skin care anti-aging ingredient: in vitro and animal study by Lee HS1, Kim MR, Park Y, Park HJ, Chang UJ, Kim SY, Suh HJ.(PubMed)
(14) Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract by Rangkadilok N1, Sitthimonchai S, Worasuttayangkurn L, Mahidol C, Ruchirawat M, Satayavivad J.(PubMed)
(15) Enhanced antioxidant and antityrosinase activities of longan fruit pericarp by ultra-high-pressure-assisted extraction by rasad KN1, Yang B, Shi J, Yu C, Zhao M, Xue S, Jiang Y.(PubMed)
(16) Physiological activity of irradiated green tea polyphenol on the human skin by An BJ1, Kwak JH, Son JH, Park JM, Lee JY, Park TS, Kim SY, Kim YS, Jo C, Byun MW.(PubMed)
(17) Protective effects of tea polysaccharides and polyphenols on skin by Wei X1, Liu Y, Xiao J, Wang Y.(PubMed)
(18) Cinnamomum cassia essential oil inhibits α-MSH-induced melanin production and oxidative stress in murine B16 melanoma cells by Chou ST1, Chang WL, Chang CT, Hsu SL, Lin YC, Shih Y.(PubMed)
(19) Tyrosinase inhibitory effect of quercetin 4'-O-β-D-glucopyranoside from dried skin of red onion (Allium cepa) by Arung ET1, Wijaya Kusuma I, Shimizu K, Kondo R.(PubMed)
(20) Inhibitory effect of [6]-gingerol on melanogenesis in B16F10 melanoma cells and a possible mechanism of action by Huang HC1, Chiu SH, Chang TM.(PubMed)
(21) [8]-Gingerol inhibits melanogenesis in murine melanoma cells through down-regulation of the MAPK and PKA signal pathways by Huang HC1, Chou YC, Wu CY, Chang TM.(PubMed)
(21a) Inhibitory effect of an ellagic acid-rich pomegranate extract on tyrosinase activity and ultraviolet-induced pigmentation by Yoshimura M1, Watanabe Y, Kasai K, Yamakoshi J, Koga T.(PubMed)
(21b) Effects of oral administration of ellagic acid-rich pomegranate extract on ultraviolet-induced pigmentation in the human skin by Kasai K1, Yoshimura M, Koga T, Arii M, Kawasaki S.(PubMed)
(22) Biofunctional Constituents from Liriodendron tulipifera with Antioxidants and Anti-Melanogenic Properties by Li WJ1, Lin YC, Wu PF, Wen ZH, Liu PL, Chen CY, Wang HM.(PubMed)
(22a) The effects of areca catechu L extract on anti-inflammation and anti-melanogenesis by Lee KK1, Choi JD.(PubMed)
(23) Inhibition of UVA-mediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system by Panich U1, Tangsupa-a-nan V, Onkoksoong T, Kongtaphan K, Kasetsinsombat K, Akarasereenont P, Wongkajornsilp A.(PubMed)
(24) \Whitening efficacy of plant extracts including orchid extracts on Japanese female skin with melasma and lentigo senilis by Tadokoro T1, Bonté F, Archambault JC, Cauchard JH, Neveu M, Ozawa K, Noguchi F, Ikeda A, Nagamatsu M, Shinn S.(PubMed)
(25) The effects of topical l(+) lactic Acid and ascorbic Acid on skin whitening by Smith WP.(PubMed)
(26) Traber MG. Vitamin E. In: Shils ME, Shike M, Ross AC, Caballero B, Cousins R, eds. Modern Nutrition in Health and Disease. 10th ed. Baltimore, MD: Lippincott Williams & Wilkins, 2006;396-411.
(27) Comparison of the inhibitory effects of vitamin E analogues on melanogenesis in mouse B16 melanoma cells by Kamei Y1, Otsuka Y, Abe K.(PubMed)
(28) The depigmenting effect of alpha-tocopheryl ferulate on human melanoma cells by Funasaka Y1, Chakraborty AK, Komoto M, Ohashi A, Ichihashi M.(PubMed)
(29) Depigmenting effect of alpha-tocopheryl ferulate on normal human melanocytes by Funasaka Y1, Komoto M, Ichihashi M.(PubMed)
(30) Piceatannol inhibits melanogenesis by its antioxidative actions by Yokozawa T1, Kim YJ.(PubMed)
(31) Modulation of microphthalmia-associated transcription factor gene expression alters skin pigmentation by Lin CB1, Babiarz L, Liebel F, Roydon Price E, Kizoulis M, Gendimenico GJ, Fisher DE, Seiberg M.(PubMed)
(32) Natural ingredients for darker skin types: growing options for hyperpigmentation by Alexis AF Blackcloud P.(PubMed)
(33) Glutathione as an oral whitening agent: a randomized, double-blind, placebo-controlled study by Arjinpathana N1, Asawanonda P.(PubMed)
(34) Glutathione as a depigmenting agent: an overview by Villarama CD1, Maibach HI.(PubMed)
(35) Glutathione plays a key role in the depigmenting and melanocytotoxic action of N-acetyl-4-S-cysteaminylphenol in black and yellow hair follicles by Alena F1, Dixon W, Thomas P, Jimbow K.(PubMed)
Food Therapy - Celery and Oxidative Stress
Celery is a species of Apium graveolens, belonging to the family Apiaceae.
It is cultivated all around the globe as a vegetable. Celery can grow
to 1/2 m tall with stalks (leaf on the top) arranging in a conical shape
joined at a common base.
Nutrients
1. Carbohydrates
2. Sugars
3. Fiber
4. Fat
5. Protein
6. Water
7. Vitamin A
8. Vitamin B1
9. Vitamin B2
10. Vitamin B6
11. Vitamin C
12. Vitamin K
13. Folate
14. Calcium
15. Manganese
16. Magnesium
17. Phosphorus
18. Potassium
19. Iron
20. Sodium
21. Etc.
Phytochemicals
1. 3-n-butyl-phthalide
2. Acetylenics,
3. Coumarins
4. Phenolic acids
5. Limonene, coumarin,
6. Phthalides
7. Apigenin
and falcariondiol (1), (9Z) 1,9-heptadecadiene-4,6-diyne-3,8,11-triol (2), oplopandiol (3), bergapten (4), 5,8-dimethoxy psoralen (5), isofraxidin (6), eugenic acid (7), trans-ferulic acid (8), trans-cinnamic acid (9), p-hydroxyphenylethanol ferulate (10), caffeoylquinic acid (11), 5-p-trans-coumaroylquinic acid (12), sedanolide (13), lunularin (14), lunularic acid (15), 2-(3-methoxy-4-hydroxyphenol)-propane-1,3-diol (16), D-allitol (17), beta-sitosterol (18), benzolic acid (19), succinic acid (20), according to Shenyang Pharmaceutical University(a).
Oxidative stress is the damage caused by imbalance between Reactive oxygen species and the abilities of the body to inhibit them.
Increased consumption of fruits and vegetables containing high levels of phytochemicals showed to be effective in preventing chronic diseases related to oxidative stress in the human body, including celery(b).Flavonoid extracts from celery, according to the Harbin Medical University, in the rat study sreduced the activities of superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST) and increased content of malondialdehyde (MDA) and activity of glutathione peroxidase (GPx)(c). According to University of Novi Sad, roots and leaves extract of celery also, exhibited its scavenging property of OH* and DPPH* radicals and reduction of LPx intensity in liposomes, through their protective (antioxidant) activity(d). Limonene, a major compound found in celery seed oil, process anti free radical activity, and may be used as natural antioxidants in food applications(e).
Ovarian Cysts And PCOS Elimination
Back to Researched articles - Points of view of Vitamins, Foods and Herbs
http://kylejnorton.blogspot.ca/p/blog-page_24.html
References
(a) [Chemical constituents of fresh celery].[Article in Chinese] by Zhou K1, Wu B, Zhuang Y, Ding L, Liu Z, Qiu F(PubMed)
(b) Antioxidant and antiproliferative activities of common vegetables by Chu YF1, Sun J, Wu X, Liu RH.(PubMed)
(c) Influence of flavonoid extracts from celery on oxidative stress induced by dichlorvos in rats.
(e) Essential oil composition and antiradical activity of the oil of Iraq plants by Kiralan M1, Bayrak A, Abdulaziz OF, Ozbucak T.(PubMed)
Nutrients
1. Carbohydrates
2. Sugars
3. Fiber
4. Fat
5. Protein
6. Water
7. Vitamin A
8. Vitamin B1
9. Vitamin B2
10. Vitamin B6
11. Vitamin C
12. Vitamin K
13. Folate
14. Calcium
15. Manganese
16. Magnesium
17. Phosphorus
18. Potassium
19. Iron
20. Sodium
21. Etc.
Phytochemicals
1. 3-n-butyl-phthalide
2. Acetylenics,
3. Coumarins
4. Phenolic acids
5. Limonene, coumarin,
6. Phthalides
7. Apigenin
and falcariondiol (1), (9Z) 1,9-heptadecadiene-4,6-diyne-3,8,11-triol (2), oplopandiol (3), bergapten (4), 5,8-dimethoxy psoralen (5), isofraxidin (6), eugenic acid (7), trans-ferulic acid (8), trans-cinnamic acid (9), p-hydroxyphenylethanol ferulate (10), caffeoylquinic acid (11), 5-p-trans-coumaroylquinic acid (12), sedanolide (13), lunularin (14), lunularic acid (15), 2-(3-methoxy-4-hydroxyphenol)-propane-1,3-diol (16), D-allitol (17), beta-sitosterol (18), benzolic acid (19), succinic acid (20), according to Shenyang Pharmaceutical University(a).
Oxidative stress is the damage caused by imbalance between Reactive oxygen species and the abilities of the body to inhibit them.
Increased consumption of fruits and vegetables containing high levels of phytochemicals showed to be effective in preventing chronic diseases related to oxidative stress in the human body, including celery(b).Flavonoid extracts from celery, according to the Harbin Medical University, in the rat study sreduced the activities of superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST) and increased content of malondialdehyde (MDA) and activity of glutathione peroxidase (GPx)(c). According to University of Novi Sad, roots and leaves extract of celery also, exhibited its scavenging property of OH* and DPPH* radicals and reduction of LPx intensity in liposomes, through their protective (antioxidant) activity(d). Limonene, a major compound found in celery seed oil, process anti free radical activity, and may be used as natural antioxidants in food applications(e).
Ovarian Cysts And PCOS Elimination
Back to Researched articles - Points of view of Vitamins, Foods and Herbs
http://kylejnorton.blogspot.ca/p/blog-page_24.html
References
(a) [Chemical constituents of fresh celery].[Article in Chinese] by Zhou K1, Wu B, Zhuang Y, Ding L, Liu Z, Qiu F(PubMed)
(b) Antioxidant and antiproliferative activities of common vegetables by Chu YF1, Sun J, Wu X, Liu RH.(PubMed)
(c) Influence of flavonoid extracts from celery on oxidative stress induced by dichlorvos in rats.
Cao J1, Zhang X, Wang Q, Jia L, Zhang Y, Zhao X.(PubMed)
(d) Effect of celery (Apium graveolens) extracts on some biochemical parameters of oxidative stress in mice treated with carbon tetrachloride by Popović M1, Kaurinović B, Trivić S, Mimica-Dukić N, Bursać M.(PubMed)(e) Essential oil composition and antiradical activity of the oil of Iraq plants by Kiralan M1, Bayrak A, Abdulaziz OF, Ozbucak T.(PubMed)
Thursday, 10 April 2014
Asthma in Foods points of view
By Kyle J. Norton
Respiratory Disease is defined as medical conditions, affecting the breathing organ and tissues including Inflammatory lung disease, Obstructive lung diseases, Restrictive lung diseases, Respiratory tract infections, trachea, bronchi, bronchioles, alveoli, the nerves and muscles breathing , etc.
Asthma is a chronic inflammatory disease affecting the air way of the lung with recurring symptoms, such as wheezing, chest tightness, shortness of breath, and coughing. The disease affects people of all ages, and mostly starts during childhood. According to American academy, allergy, asthma and immunology, about 1 in 10 children (10%) had asthma and 1 in 12 adults (8%) had asthma in 2009. (about 25 million, or 8% of the U.S. population)(1).
Epidemiological studies, linking foods in reduced risk and treatment of asthma have not been conclusive(a)(b)(c)(d), but certain foods have been found to be effectively.
A. Types of vegetable reduced risk of asthma
1. Garlic
Garlic (Allium sativum) is a species in the onion genus, belonging to family Amaryllidaceae, native to central Asia. It has been used popularly in traditional and Chinese medicine in treating common cold and flu, blood pressure cholesterol levels, natural antibiotic, etc.
Diallyl disulfide (DADS), a major organosulfur compound found in garlic, in an ovalbumin-induced model of allergic asthma and RAW264.7 cells, showed to inhibit the proinflammatory proteins, through up regulation of Nrf-2/HO-1 and down regulation of NF-κB pathways(2). According to the study by Tarbiat Modares University, purified aged garlic extract exhibited the protective effect of asthma through a significant decrease in the hallmark criteria of allergic airway inflammation levels(3).
2. Tomatoes
Tomato is a red, edible fruit, genus Solanum, belonging to the family Solanaceae, native to South America. Because of its health benefits, tomato is grown world wide for commercial purpose
and often in green house.
High-antioxidant diet is associated to reduced risk of asthma, according to University of Newcastle, whole foods intake such as tometoes showed to alter clinical asthma outcomes of patient who were in low antioxidant given tomato extract (45 mg lycopene/d)(4). The John Hunter Hospital study also supported the role of tomato juice and extract in reduced airway neutrophil influx with tomato extract also reduced sputum neutrophil elastase activity(5). Naringenin chalcone, the other polyphenols found in the skin of red tomatoes, showed to suppresses asthmatic symptoms through inhibition of Th2 cytokine production from CD4 T(6).
3. Seaweeds
Marine algae have been used as food products and herbal medicine in many countries throughout human history with an abundance of algae floral. In recent studies, marine algae may consist great sources of chemical ingredients in treating inflammatory and allergic disorders, such as such as asthma, atopic dermatitis, and allergic rhinitis (7)(8). According to the study at Pukyong National University, many marine macro- and microalgae have been reported to have potential to ameliorate the effect of asthma and further studies are needed to identify the molecular mechanism of this disease to apply those marine resources against asthma effectively(9). Iota-Carrageenan, derived from red seaweed showed to be potent against anti-rhinoviralas (HRVs may worsen COPD and asthma), it effectively prevented the replication of HRV1A, HRV2, HRV8, HRV14, HRV16, HRV83 and HRV84 in primary human nasal epithelial cells in culture(10).
4. Ginger
Ginger (Zingiber officinale) or ginger root is the genus Zingiber, belonging to the family Zingiberaceae, native to Tamil. It has been used in traditional and Chinese medicine to treat dyspepsia, gastroparesis, constipation, edema, difficult urination, colic, etc.
Purified components of ginger was found to be effective in relax airway smooth muscle (ASM), through involvement of PDE4D inhibition and cytoskeletal regulatory proteins. Together with other chemical constituents such as β-agonists, 6-gingerol, 8-gingerol, or 6-shogaol may augment existing asthma therapy, insisted by Columbia University study(11). Quercetin, a chemical compound found in ginger, relaxed airway smooth muscle via cAMP-mediated pathways and augments β-agonist relaxation(12). The Columbia University Medical Center study also found many ginger's isolated active components, [6]-gingerol, [8]-gingerol, and [6]-shogaol, relax ASM, and [8]-gingerol attenuated airway hyperresponsiveness, in part by altering [Ca(2+)](i) regulation(13).
5. Broccoli
Broccoli is a mustard/cabbage plant, belong to the family Brassicaceae. It has large flower heads, usually green in color and the mass of flower heads is surrounded by leaves and evolved from a wild cabbage plant on the continent of Europe.
Sulforaphane, a major chemical compound found in broccoli sprout demonstrated the potential preventive and therapeutic potential. Broccoli or broccoli sprouts rich in glucoraphanin reduced the impact of particulate pollution on allergic disease and asthma, according to David Geffen School of Medicine at UCLA(14).In (OVA)-induced murine asthma model, Sulforaphane significantly alleviated the OVA-induced airway hyperresponsiveness possiblt through suppressed the increase in the levels of SOCS-3 and GATA-3 and IL-4 expression in the OVA-challenged mice(15).
6. Spinach
Spinach is an edible flowering plant in the genus Spinacia, belongs to the family of Amaranthaceae and native to central and southwestern Asia. It is considered as a healthy plant containing vary vitamins and minerals. Aqueous extract of spinach, in ovalbumin-induced asthmatic model. exerted strong anti-asthmatic effects through induction of a decrease in the CD4+ cell number, IL-4/13, and other molecular markers in the lung(16).
B. Types of fruits reduced risk of asthma
1. Apple
Apple is the pomaceous fruit of the apple tree, a species of the rose family Rosaceae. It is one of the most widely cultivated tree fruits. The tree is originated in Central Asia. Drinking apple juice from concentrate at least once a day (compared with less than once a month) might be negatively associated with current wheeze (17a). According to the Cornell University, phenolics, flavonoids and carotenoids of apple may play a key role in reducing chronic disease risk, including asthma(17)(18)(19). The study at the King's College London, showed a possibly protective effect of apple in reduced risk of the presence of other flavonoids or polyphenols on obstructive lung disease, instead of catechins, flavonols and flavones(20). According to the Brigham and Women's Hospital, Belladonna alkaloids, derived from the thorn-apple plant were used to treat asthma in 1905, and chemically synthesized entities in this class were still in use today(21).
2. Grape
Grape is a woody vines of the genus Vitis, belong to the family Vitaceae, native to southern Turkey.
Polyphenols found in Fermented Grape Marc (FGM) may be effective in exhibited several immunomodulating activities, including decreased oxidative burst of human polymorphonuclear cells and monocytes of which induced anti-allergic and anti inflammatory effects in chronic asthma(22). According to the study of Graduate School of Science, Kitasato University, Fermented Grape Marc (FGM) also suppressed both phases of type-I allergic responses, through a fraction extractable with acetone(23).
3. Strawberry
Strawberries is a genius of Fragaria × ananassa belongs to the family Roseaceae. They have been grown all over the world with suitable climate for commercial profits and for health benefits.
Gallic acid (3,4,5-trihydroxybenzoic acid), a polyphenyl natural products found abundantly in strawberry inhibited inflammatory allergic diseases, through blocking histamine release and pro-inflammatory cytokine expression(24). The Johannes Gutenberg University, also suggested that the composition of Gallic acid, methyl gallate and quercetin in animal study showed significant effects with one certain fraction (GG II, 3 days, 3 x 2 mg/kg) in reduced allergen- and PAF-induced bronchial reactions by more than 70%(25).
C. Seeds and Nuts
1. Sesame oil
Sesame is a species of Sesamum indicum and belong to the family of Pedaliaceae, native to to sub-saharan Africa. The tree can grow to 1.6 to 3.3 ft tall and is mainly cultivated for their seeds. Sesame oil, a natural product with anti-inflammatory property showed to inhibited pulmonary edema and decreased interleukin (IL)-1 β and IL-6 levels in bronchoalveolar lavage fluid in OVA-treated mice through inhibition of systemic IgE level in allergic asthma(26).
2. Faxseed
Flax seed is native to the region of the eastern Mediterranean to India and also known as common flax or linseed. Flax is an erect annual plant, it can grow to 1.2 m tall. The leaves are 20–40 mm long and 3 mm broad. Suggestions of saturated and n-6 fatty acids and concomitant decrease in n-3 fatty acids may be a major driver of the increase in the incidence of inflammatory diseases such as asthma, allergy, and atherosclerosis. According to the Wake Forest University, dietary supplementation with flaxseed oil affects the biochemistry of fatty acid metabolism through the balance of proinflammatory mediators and atherogenic lipids, affecting the modulation of inflammatory diseases(27) and patients with asthma and allergic rhinitis may benefit from hydration and a diet low in sodium, omega-6 fatty acids, and transfatty acids, but high in omega-3 fatty acids (i.e., fish, almonds, walnuts, pumpkin, and flax seeds)(28).
3. Sunflower seed
Sunflower is a genus of Helianthus, belong to the family Asteraceae and native to the Americas. It grow to heights between 5–12 ft. Sunflower seeds are usually classified by the difference of their husks and are considered as healthy snack of a meal.
Helianthus annuus (Sunflower) seed (HAS) aqueous extract, may be potential in reducing the asthma-like symptoms induced by a mouse ovalbumin challenge model(29).
C. Others
1. Green Tea
Green tea contains more amount of antioxidants than any drinks or food with the same volume, and is the leaves of Camellia sinensis, undergone minimal oxidation during processing, originated from China. Green tea has been a precious drink in traditional Chinese culture and used exceptional in socialization for more than 4000 thousand years. Because of their health benefits, they have been cultivated for commercial purposes all over the world.
According to the study at State University of New York Downstate Medical Center, green tea extract (GTE), and its major catechin, consisted an immunoregulatory effects through suppression of IgE production by peripheral blood mononuclear cells of allergic asthmatic patinets(30) and B cell production of IgE without inducing apoptosis(31). Other study suggested a anti asthmatic effect of aqueous extract of Camellia sinensis through increasing the expression level of tumor necrosis factor-beta and interferon-gamma and decreasing the expression of anti-asthmatic cytokines in the lung(32).
2. Fish and fish oil
Consumption of fish has also been related to lower airway hyperreactivity among children and higher lung function in adults, according to Pan American Health Organization and National Institute of Public Health(33) and fish oil supplements, administered in a dosage of 1 to 1.2 g of EPA and DHA per day, also may be helpful to some patients with asthma(34). According to Ewha Womans University, asthmatic patient were found to consume fewer amounts of kimchi and fish but had a higher cereal intake than those without asthma(35).
3. Whole grain
Wholegrain is cereal grains containing cereal germ, endosperm, and bran. According to the study by National Institute of Public Health and the Environment, intake of whole grain wss associated to reduced risk asthma and may have a protective effect against asthma in children(36). Other study suggested that whole grain and high in fruits, vegetables, and low in alcohol and fatty foods may be useful for prevention of cardiovascular disease and cancer, to protect respiratory health in both children and adults(37).
4. Coffee
Coffee is made from the roasted seeds of the genus Coffee, belonging to the family Rubiaceae native to southern Arabia. Strong evidence suggested that drinking coffee reduced risk of asthma. According to Istituto Centrale di Statistica, caffeine intake has a bronchodilator effect in asthma, and long-term moderate coffee consumption may not only reduce symptoms, but also prevent the clinical manifestation of bronchial asthma(38) and people who drank coffee on a regular basis had a 29% reduction in the odds of having currence(39). The University of London also suggested that caffeine appears to improve airways function modestly, for up to four hours, in people with asthma(40).
Taken altogether, some foods have been found effectively in reduced risk and treatment of asthma and allergic induced asthmatic disease. Further studies with large sample size and multi centers are necessary to identify the ingredients for improvement of validation. As always, all articles written by Kyle J. Norton are for information & education only, please consult your Doctor & Related field specialist before applying
Ovarian Cysts And PCOS Elimination
Back to Most common Types of Cancer http://kylejnorton.blogspot.ca/p/blog-page.html
Back to Kyle J. Norton Home page http://kylejnorton.blogspot.ca
References
(1) American academy, allergy, asthma and immunology(AAAAI)
(a) Association between nutrition and the evolution of multimorbidity: The importance of fruits and vegetables and whole grain products by Ruel G1, Shi Z, Zhen S, Zuo H, Kröger E, Sirois C, Lévesque JF, Taylor AW.(PubMed)
(b) Dietary factors associated with lifetime asthma or hayfever diagnosis in Australian middle-aged and older adults: a cross-sectional study by Rosenkranz RR1, Rosenkranz SK, Neessen KJ.(PubMed)
(c) Protective effect of fruits, vegetables and the Mediterranean diet on asthma and allergies among children in Crete by Chatzi L1, Apostolaki G, Bibakis I, Skypala I, Bibaki-Liakou V, Tzanakis N, Kogevinas M, Cullinan P.(PubMed)
(d) Effect of diet on asthma and allergic sensitisation in the International Study on Allergies and Asthma in Childhood (ISAAC) Phase Two by Nagel G1, Weinmayr G, Kleiner A, Garcia-Marcos L, Strachan DP; ISAAC Phase Two Study Group.(PubMed)
(2) Diallyl-disulfide, an organosulfur compound of garlic, attenuates airway inflammation via activation of the Nrf-2/HO-1 pathway and NF-kappaB suppression by Shin IS1, Hong J, Jeon CM, Shin NR, Kwon OK, Kim HS, Kim JC, Oh SR, Ahn KS.(PubMed)
(3) Purified aged garlic extract modulates allergic airway inflammation in BALB/c mice by Zare A1, Farzaneh P, Pourpak Z, Zahedi F, Moin M, Shahabi S, Hassan ZM.(PubMed)
(4) Manipulating antioxidant intake in asthma: a randomized controlled trial by Wood LG1, Garg ML, Smart JM, Scott HA, Barker D, Gibson PG.(PubMed)
(5) Lycopene-rich treatments modify noneosinophilic airway inflammation in asthma: proof of concept by Wood LG1, Garg ML, Powell H, Gibson PG.(PubMed)
(6) Naringenin chalcone suppresses allergic asthma by inhibiting the type-2 function of CD4 T cells by Iwamura C1, Shinoda K, Yoshimura M, Watanabe Y, Obata A, Nakayama T.(PubMed)
(7) Potential targets for anti-inflammatory and anti-allergic activities of marine algae: an overview BY Vo TS1, Ngo DH, Kim SK.(PubMed)
(8) Antiallergic benefit of marine algae in medicinal foods by Kim SK1, Vo TS, Ngo DH.(PubMed)
(9) Marine macro- and microalgae as potential agents for the prevention of asthma: hyperresponsiveness and inflammatory subjects by Senevirathne M1, Kim SK.(PubMed)
(10) Iota-Carrageenan is a potent inhibitor of rhinovirus infection by Grassauer A1, Weinmuellner R, Meier C, Pretsch A, Prieschl-Grassauer E, Unger H.(PubMed)
(11) Active components of ginger potentiate β-agonist-induced relaxation of airway smooth muscle by modulating cytoskeletal regulatory proteins by Townsend EA1, Zhang Y, Xu C, Wakita R, Emala CW.(PubMed)
(12) Quercetin acutely relaxes airway smooth muscle and potentiates β-agonist-induced relaxation via dual phosphodiesterase inhibition of PLCβ and PDE4 by Townsend EA1, Emala CW Sr.(PubMed)
(13) Effects of ginger and its constituents on airway smooth muscle relaxation and calcium regulation by Townsend EA1, Siviski ME, Zhang Y, Xu C, Hoonjan B, Emala CW.(PubMed)
(14) Sulforaphane-rich broccoli sprout extract attenuates nasal allergic response to diesel exhaust particles by Heber D1, Li Z, Garcia-Lloret M, Wong AM, Lee TY, Thames G, Krak M, Zhang Y, Nel A.(PubMed)
(15) Sulforaphane inhibits the Th2 immune response in ovalbumin-induced asthma by Park JH1, Kim JW, Lee CM, Kim YD, Chung SW, Jung ID, Noh KT, Park JW, Heo DR, Shin YK, Seo JK, Park YM.(PubMed)
(16) Amelioration of asthmatic inflammation by an aqueous extract of Spinacia oleracea Linn by Heo JC1, Park CH, Lee HJ, Kim SO, Kim TH, Lee SH.(PubMed)
(17) Apple phytochemicals and their health benefits by Boyer J1, Liu RH.(PubMed)
(17a) Childhood asthma and fruit consumption by Okoko BJ1, Burney PG, Newson RB, Potts JF, Shaheen SO.(PubMed)
(18) A comprehensive review of apples and apple components and their relationship to human health by Hyson DA.(PubMed)
(19) Dietary antioxidants and asthma in adults: population-based case-control study by Shaheen SO1, Sterne JA, Thompson RL, Songhurst CE, Margetts BM, Burney PG.(PubMed)
(20) Dietary intake of flavonoids and asthma in adults by Garcia V1, Arts IC, Sterne JA, Thompson RL, Shaheen SO.(PubMed)
(21) Asthma: one hundred years of treatment and onward by Chu EK1, Drazen JM.(PubMed)
(22) Immunomodulating and Anti-Allergic Effects of Negroamaro and Koshu Vitis vinifera Fermented Grape Marc (FGM) by Marzulli G, Magrone T, Vonghia L, Kaneko M, Takimoto H, Kumazawa Y, Jirillo E(PubMed)
(23) Suppression of type-I allergic responses by oral administration of grape marc fermented with Lactobacillus plantarum by Tominaga T1, Kawaguchi K, Kanesaka M, Kawauchi H, Jirillo E, Kumazawa Y.(PubMed)
(24) Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells by Kim SH1, Jun CD, Suk K, Choi BJ, Lim H, Park S, Lee SH, Shin HY, Kim DK, Shin TY.(PubMed)
(25) Antiasthmatic effects of Galphimia glauca, gallic acid, and related compounds prevent allergen- and platelet-activating factor-induced bronchial obstruction as well as bronchial hyperreactivity in guinea pigs by Dorsch W1, Bittinger M, Kaas A, Müller A, Kreher B, Wagner H.(PubMed)
(26) Sesame oil attenuates ovalbumin-induced pulmonary edema and bronchial neutrophilic inflammation in mice by Hsu DZ1, Liu CT, Chu PY, Li YH, Periasamy S, Liu MY.(PubMed)
(27) Mechanisms by which botanical lipids affect inflammatory disorders by Chilton FH1, Rudel LL, Parks JS, Arm JP, Seeds MC.(PubMed)
(28) Respiratory and allergic diseases: from upper respiratory tract infections to asthma by Jaber R.(PubMed)
(29) Aqueous extract of the Helianthus annuus seed alleviates asthmatic symptoms in vivo by Heo JC1, Woo SU, Kweon MA, Park JY, Lee HK, Son M, Rho JR, Lee SH.(PubMed)
(30) Green tea (Camelia sinensis) mediated suppression of IgE production by peripheral blood mononuclear cells of allergic asthmatic humans by Wu SY1, Silverberg JI, Joks R, Durkin HG, Smith-Norowitz TA.(PubMed)
(31) Green tea (Camelia sinensis) suppresses B cell production of IgE without inducing apoptosis by Hassanain E1, Silverberg JI, Norowitz KB, Chice S, Bluth MH, Brody N, Joks R, Durkin HG, Smith-Norowitz TA.(PubMed)
(32) An aqueous extract of green tea Camellia sinensis increases expression of Th1 cell-specific anti-asthmatic markers by Heo JC1, Rho JR, Kim TH, Kim SY, Lee SH.(PubMed)
(33) Diet and obstructive lung diseases by Romieu I1, Trenga C.(PubMed)
(34) Respiratory and allergic diseases: from upper respiratory tract infections to asthma by Jaber R.(PubMed)
(35) Association between kimchi intake and asthma in Korean adults: the fourth and fifth Korea National Health and Nutrition Examination Survey (2007-2011) by Kim H1, Oh SY, Kang MH, Kim KN, Kim Y, Chang N.(PubMed)
(36) Diet and asthma in Dutch school children (ISAAC-2) by Tabak C1, Wijga AH, de Meer G, Janssen NA, Brunekreef B, Smit HA.(PubMed)
(37) Dietary factors in the pathogenesis of asthma and chronic obstructive pulmonary disease by Denny SI1, Thompson RL, Margetts BM.(PubMed)
(38) Coffee drinking and prevalence of bronchial asthma by Pagano R1, Negri E, Decarli A, La Vecchia C.(PubMed)
(39) Caffeine intake and asthma symptoms by Schwartz J1, Weiss ST.(PubMed)
(40) Caffeine for asthma by Welsh EJ1, Bara A, Barley E, Cates CJ.(PubMed)
Food therapy - Celery and hypertension
Celery is a species of Apium graveolens, belonging to the family Apiaceae.
It is cultivated all around the globe as a vegetable. Celery can grow
to 1/2 m tall with stalks (leaf on the top) arranging in a conical shape
joined at a common base.
Nutrients
1. Carbohydrates
2. Sugars
3. Fiber
4. Fat
5. Protein
6. Water
7. Vitamin A
8. Vitamin B1
9. Vitamin B2
10. Vitamin B6
11. Vitamin C
12. Vitamin K
13. Folate
14. Calcium
15. Manganese
16. Magnesium
17. Phosphorus
18. Potassium
19. Iron
20. Sodium
21. Etc.
Phytochemicals
1. 3-n-butyl-phthalide
2. Acetylenics,
3. Coumarins
4. Phenolic acids
5. Limonene, coumarin,
6. Phthalides
7. Apigenin
and falcariondiol (1), (9Z) 1,9-heptadecadiene-4,6-diyne-3,8,11-triol (2), oplopandiol (3), bergapten (4), 5,8-dimethoxy psoralen (5), isofraxidin (6), eugenic acid (7), trans-ferulic acid (8), trans-cinnamic acid (9), p-hydroxyphenylethanol ferulate (10), caffeoylquinic acid (11), 5-p-trans-coumaroylquinic acid (12), sedanolide (13), lunularin (14), lunularic acid (15), 2-(3-methoxy-4-hydroxyphenol)-propane-1,3-diol (16), D-allitol (17), beta-sitosterol (18), benzolic acid (19), succinic acid (20), according to Shenyang Pharmaceutical University(a).
Celery and hypertension
Blood pressure is the force of blood pushing against the walls of the arteries as the heart pumps out blood. High blood pressure means raising pressure in your heart.If it stays high over time it can damage the body in many ways.
In take of overall vegetable was found to have an Inverse associations to blood pressure (BP), including celery(b). Celery (Apium graveolens) seed extracts, in hypertensive rat study, showed to decreased BP and increased the HR, through its active hydrophobic constitutes(c)
Ovarian Cysts And PCOS Elimination
Back to Researched articles - Points of view of Vitamins, Foods and Herbs
http://kylejnorton.blogspot.ca/p/blog-page_24.html
References
(a) [Chemical constituents of fresh celery].[Article in Chinese] by Zhou K1, Wu B, Zhuang Y, Ding L, Liu Z, Qiu F(PubMed)
(b) Relations of raw and cooked vegetable consumption to blood pressure: the INTERMAP Study by Chan Q1, Stamler J, Brown IJ, Daviglus ML, Van Horn L, Dyer AR, Oude Griep LM, Miura K, Ueshima H, Zhao L, Nicholson JK, Holmes E, Elliott P(PubMed)
(c) Antihypertensive effect of celery seed on rat blood pressure in chronic administration by Moghadam MH1, Imenshahidi M, Mohajeri SA.(PubMed)
Nutrients
1. Carbohydrates
2. Sugars
3. Fiber
4. Fat
5. Protein
6. Water
7. Vitamin A
8. Vitamin B1
9. Vitamin B2
10. Vitamin B6
11. Vitamin C
12. Vitamin K
13. Folate
14. Calcium
15. Manganese
16. Magnesium
17. Phosphorus
18. Potassium
19. Iron
20. Sodium
21. Etc.
Phytochemicals
1. 3-n-butyl-phthalide
2. Acetylenics,
3. Coumarins
4. Phenolic acids
5. Limonene, coumarin,
6. Phthalides
7. Apigenin
and falcariondiol (1), (9Z) 1,9-heptadecadiene-4,6-diyne-3,8,11-triol (2), oplopandiol (3), bergapten (4), 5,8-dimethoxy psoralen (5), isofraxidin (6), eugenic acid (7), trans-ferulic acid (8), trans-cinnamic acid (9), p-hydroxyphenylethanol ferulate (10), caffeoylquinic acid (11), 5-p-trans-coumaroylquinic acid (12), sedanolide (13), lunularin (14), lunularic acid (15), 2-(3-methoxy-4-hydroxyphenol)-propane-1,3-diol (16), D-allitol (17), beta-sitosterol (18), benzolic acid (19), succinic acid (20), according to Shenyang Pharmaceutical University(a).
Celery and hypertension
Blood pressure is the force of blood pushing against the walls of the arteries as the heart pumps out blood. High blood pressure means raising pressure in your heart.If it stays high over time it can damage the body in many ways.
In take of overall vegetable was found to have an Inverse associations to blood pressure (BP), including celery(b). Celery (Apium graveolens) seed extracts, in hypertensive rat study, showed to decreased BP and increased the HR, through its active hydrophobic constitutes(c)
Ovarian Cysts And PCOS Elimination
Back to Researched articles - Points of view of Vitamins, Foods and Herbs
http://kylejnorton.blogspot.ca/p/blog-page_24.html
References
(a) [Chemical constituents of fresh celery].[Article in Chinese] by Zhou K1, Wu B, Zhuang Y, Ding L, Liu Z, Qiu F(PubMed)
(b) Relations of raw and cooked vegetable consumption to blood pressure: the INTERMAP Study by Chan Q1, Stamler J, Brown IJ, Daviglus ML, Van Horn L, Dyer AR, Oude Griep LM, Miura K, Ueshima H, Zhao L, Nicholson JK, Holmes E, Elliott P(PubMed)
(c) Antihypertensive effect of celery seed on rat blood pressure in chronic administration by Moghadam MH1, Imenshahidi M, Mohajeri SA.(PubMed)
Subscribe to:
Posts (Atom)