Pages

Monday, 14 November 2016

Antioxidants: Neurodegenrative diseases - Lou Gehrig's diseases: The Effects of Free radicals on Lou Gehrig's disease

Kyle J. Norton(Scholar, Master of Nutrients), all right reserved.
Health article writer and researcher; Over 10.000 articles and research papers have been written and published on line, including world wide health, ezine articles, article base, healthblogs, selfgrowth, best before it's news, the karate GB daily, etc.,.
Named TOP 50 MEDICAL ESSAYS FOR ARTISTS & AUTHORS TO READ by Disilgold.com Named 50 of the best health Tweeters Canada - Huffington Post
Nominated for shorty award over last 4 years
Some articles have been used as references in medical research, such as international journal Pharma and Bio science, ISSN 0975-6299.


Human aging is a biological process, no one can stop, but delay it. It is possible that one person has a physiological younger than his or her biological if one engages in healthy living life style and eating healthily by increasing the intake of good healthy food such as whole grain, fruits, vegetables, beans and legumes, etc. and reducing the consumption of harmful foods, such as saturated fat, trans fat, artificial ingredients, etc.

                      

                 Neurodegenrative diseases

Neurodegeneration is defined as a health conditions of the progressive loss of structure or function of neurons, including death of neurons, includingParkinson’s, Alzheimer’s, and Huntington’s diseases due to genetic mutations, most of which are located in completely unrelated genes.


                                         Lou Gehrig's diseases 

Lou Gehrig's diseases is defined as a condition of neurological disorders that selectively affect the motor neurones caused by the degeneration of neurons located in the two separate anatomical structures of the spinal cord and the cerebral cortex that provide activity of carrying nerve impulses from receptors to the central nervous system.

The Effects of Free radicals on Lou Gehrig's disease

Researchers found that glutamate in the synapses enhances the production of free radicals compounds only in motor nerve cells but spares other nerve cells such as cells control senses and other body functions, causing to more production of free radicals and leading to disrupting of the surrounding support cells, called astrocytes, which regulate glutamate levels.

No comments:

Post a Comment