Pages

Wednesday 6 May 2015

The top 8 foods for reducing prostate cancer risk

Kyle J. Norton

The widespread of prostate cancer, once considered a disease of aging male, now have become major concerns of governments and scientific community in South East Asian with tendency to effect even younger age population. Suggestions emerged of over consuming bad fats in any time in history accompanied with unhealthy diet and life style may be the possible causes of the disease, linking to the economic prosperity over 2 decades. Foods for diseases' management have been prescribed in folk medicine over thousands of year as one of best medicine of nature in preventing and treating diseases, including prostate cancer.
Prostate cancer is defined as a condition in which the cells of prostate has become cancerous, causing abnormal cell growth with possibility of spreading to the distant parts of the body. Most prostate cancers are slow growing and enlarged prostate and prostate cancer may be detected during physical (rectum) exams.

The top 8 foods for reducing prostate cancer risk
1. Flaxseed
Flax seed is native to the region of the eastern Mediterranean to India and also known as common flax or linseed. Flax is an erect annual plant, it can grow to 1.2 m tall. The leaves are 20–40 mm long and 3 mm broad.
Enterolactone and enterodiol, mammalian lignans derived from dietary flaxseed may obstruct or delay the progressed prostate cancer cell proliferation via vascular endothelial growth factor(VEGF)-associated pathways(76). Other study indicated that diet supplemented with 5% flaxseed inhibits the growth and development of prostate cancer in the TRAMP model(77) and  Flaxseed-supplemented  diet showed to lower prostate cancer proliferation rates and associated with biological alterations that may be protective for prostate cancer(78).

2. Vegetable oil 
Vegetables oil is a triglyceride extracted from a plant.
Increased levels of MUFA-rich vegetable oil((including olive oil, canola or peanut oil)) intake were associated with a progressive reduction in prostate cancer risk(79). Hydrogenated soybean oil (SHSO) showed remarkably strong anticarcinogenic activity against prostate cancer in the rat model and 5% dietary supplementation with SHSO inhibited the growth of prostate cancer by 80% in vivo(80).

3. Honey
The rich golden liquid is the miraculous product made by bees using nectar from flowers. It is considered as one of healthy sweet food for replacing the use of white sugar and artificial sweetener by many people.
Chrysin, a natural flavone commonly found in honey, and honey itself showed to exert its antiproliferative effect on PC-3 cells in a dose- and time-dependent manner(81)

4. Chickpea
Garbanzo beans also known as chickpea is an edible legume of genus Cicer and the family Fabaceae, high in protein and minerals. It is one of the earliest cultivated vegetables, native to Middle East.
7 protease inhibitor concentrates (PICs) isolated from chickpea showed a significant inhibition the LNCaP prostate cancer cells in concentrations tested of 25-400 μg/ml(82).

5. Olive oil
Extra virgin olive oil (EVOO), was found to significantly affect the growth of HCT 116 tumours xenografted in athymic mice(83). Polyphenols, found in Extra virgin olive oil (EVOO), exerted chemopreventive effects towards different organ specific cancers, affecting the overall process of carcinogenesis by inhibition of DNA synthesis, modulation of ROS production, regulation of cell cycle arrest, modulation of survival/proliferation pathways(84). Other study suggested that Polyphenols can directly interact with specific steps and/or proteins regulating the apoptotic process in different ways depending on their concentration, the cell system, the type or stage of the pathological process(85).

6. Black pepper
Black pepper, is a flowering vine in the family Piperaceae, its fruits used as a spice and seasoning
Piperine, a major alkaloid constituent of black pepper, inhibited the proliferation of LNCaP, PC-3, 22RV1 and DU-145 prostate cancer cells in a dose dependent manner and induced apoptosis resulted in caspase activation in LNCaP and PC-3 cells(86). β-caryophyllene oxide (CPO), a sesquiterpene isolated from essential oils of medicinal plants such as guava (Psidium guajava), oregano (Origanum vulgare L.), cinnamon (Cinnamomum spp.) clove (Eugenia caryophyllata), and black pepper (Piper nigrum L.) not only inhibited the constitutive activation of PI3K/AKT/mTOR/S6K1 (anti-apoptosis and increased cell proliferation and nutrient–hormonal signaling network) pathway signaling cascade but also down-regulated the expression of various downstream gene products that mediate cell proliferation (cyclin D1), survival (bcl-2, bcl-xL, survivin, IAP-1, and IAP-2), metastasis (COX-2), angiogenesis (VEGF), and increased the expression of p53 and p21(87).

7. Green tea
Green tea containing more amount of antioxidants than any drinks or food with the same volume, is the leaves of Camellia sinensis, undergone minimal oxidation during processing, originated from China. Green tea has been a precious drink in traditional Chinese culture and used exceptional in socialization for more than 4000 thousand years. Because of their health benefits, they have been cultivated for commercial purposes all over the world.
Green tea catechins (GTCs), a potent chemical constituent containing (-)-epigallocathechin,  (-)-epicatechin, (-)-epigallocatechin-3-gallate, (-)-epicatechin-3-gallate, in treatment of preprostate cancer men reduced lower urinary tract symptoms, improved coexistent benign prostate hyperplasia and reached a statistical significance in the case of International Prostate Symptom Scores(88).
In green tea polyphenols study, epigallocatechin-3-gallate (EGCG) exerted its anti cancer effect on signaling pathways in PCa(89). Also combination admiration of quercetin and green tea, showed a significant increase in the inhibition of proliferation, androgen receptor and phosphatidylinositol 3-kinase/Akt signaling(tumor genesis in early stage), and stimulation of apoptosis(90). In short, Green tea, a potent anti prostate cancer with activities of heritable alterations of gene expression and chromatin organization without changes in DNA sequence induced multistep process of carcinogenesis(91) may be considered as a natural treatment in vary types of cancer.

8. Fermented soybean products
Fermented soybean products are made from fermenting soybeans and filamentous fungus, along with water and salt after a period of sometime.
In the Japan, incidence of prostate caner in aging men are low compared with the Western world, suggestion of these result may be tradition Japanese diet related.  Consumption of fish, all soybean products, tofu (bean curds), and natto (fermented soybeans) was associated with decreased risk of ORs (Estimates of age-adjusted odds ratios) which supported traditional Japanese diet rich in soybean products and fish against prostate cancer(92). In China, suggestion of reduced risk of prostate cancer associated with consumption of soy foods and isoflavones found abundantly in fermented soybean products(93). Unfortunately, the epidemiological data, linking ferment soybean products to reduced risk of prostate cancer are inconsistent including miso.

The prevalence and widespread of prostate cancer may be diet, demographic and life style related disease(94)(95)(96). Suggestions and intentions are for prevention of prostate cancer to develop in the first place or used conjunction with conventional medicine in treating the disease. Eating healthy, with plenty of vegetables and fruits has always been considered as a preventive engagement in human history. "Let foods be your medicine and let medicine be your foods" by Greek physician Hippocrates (460-377 BC).


Ovarian Cysts And PCOS Elimination
Holistic System In Existence That Will Show You How To
Permanently Eliminate All Types of Ovarian Cysts Within 2 Months 


Back to Most common Types of Cancer  http://kylejnorton.blogspot.ca/p/blog-page.html

Back to Kyle J. Norton Home page http://kylejnorton.blogspot.ca    

References
(76) Flaxseed-derived enterolactone is inversely associated with tumor cell proliferation in men with localized prostate cancer by Azrad M, Vollmer RT, Madden J, Dewhirst M, Polascik TJ, Snyder DC, Ruffin MT, Moul JW, Brenner DE, Demark-Wahnefried W.(PubMed)
(77) Effect of flaxseed supplementation on prostatic carcinoma in transgenic mice BY Lin X, Gingrich JR, Bao W, Li J, Haroon ZA, Demark-Wahnefried W.(PubMed)
(78) Flaxseed supplementation (not dietary fat restriction) reduces prostate cancer proliferation rates in men presurgery by Demark-Wahnefried W, Polascik TJ, George SL, Switzer BR, Madden JF, Ruffin MT 4th, Snyder DC, Owzar K, Hars V, Albala DM, Walther PJ, Robertson CN, Moul JW, Dunn BK, Brenner D, Minasian L, Stella P, Vollmer RT.(PubMed)
(79) Men who consume vegetable oils rich in monounsaturated fat: their dietary patterns and risk of prostate cancer (New Zealand) by Norrish AE, Jackson RT, Sharpe SJ, Skeaff CM.(PubMed)
(80) Selectively hydrogenated soybean oil exerts strong anti-prostate cancer activities by Jung MY, Choi NJ, Oh CH, Shin HK, Yoon SH.(PubMed)
(81) Chrysin reduces proliferation and induces apoptosis in the human prostate cancer cell line pc-3 by Samarghandian S, Afshari JT, Davoodi S.(PubMed)
(82)Chickpea (Cicer arietinum) and other plant-derived protease inhibitor concentrates inhibit breast and prostate cancer cell proliferation in vitro. by Magee PJ, Owusu-Apenten R, McCann MJ, Gill CI, Rowland IR.(PubMed)
(83) Analgesic, anti-inflammatory and anticancer activities of extra virgin olive oil by Fezai M, Senovilla L, Jemaà M, Ben-Attia M(PubMed).
(84) Modulatory effects of polyphenols on apoptosis induction: relevance for cancer prevention by D'Archivio M, Santangelo C, Scazzocchio B, Varì R, Filesi C, Masella R, Giovannini C.(PubMed)
(85) Apoptosis in cancer and atherosclerosis: polyphenol activities by Giovannini C, Scazzocchio B, Varì R, Santangelo C, D'Archivio M, Masella R.(PubMed)
(86) Piperine, a Bioactive Component of Pepper Spice Exerts Therapeutic Effects on Androgen Dependent and Androgen Independent Prostate Cancer Cells by Samykutty A, Shetty AV, Dakshinamoorthy G, Bartik MM, Johnson GL, Webb B, Zheng G, Chen A, Kalyanasundaram R, Munirathinam G.(PubMed)
(87) β-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation by Park KR, Nam D, Yun HM, Lee SG, Jang HJ, Sethi G, Cho SK, Ahn KS.(PubMed)
(88) Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study by Bettuzzi S, Brausi M, Rizzi F, Castagnetti G, Peracchia G, Corti A.(PubMed)
(89) Modulation of signaling pathways in prostate cancer by green tea polyphenols by Khan N, Mukhtar H.(PubMed)
(90)Enhanced inhibition of prostate cancer xenograft tumor growth by combining quercetin and green tea by Wang P, Vadgama JV, Said JW, Magyar CE, Doan N, Heber D, Henning SM.(PubMed)
(91) Epigenetic effects of green tea polyphenols in cancer by Henning SM, Wang P, Carpenter CL, Heber D.(PubMed)
(92) A case-control study of diet and prostate cancer in Japan: possible protective effect of traditional Japanese diet by Sonoda T, Nagata Y, Mori M, Miyanaga N, Takashima N, Okumura K, Goto K, Naito S, Fujimoto K, Hirao Y, Takahashi A, Tsukamoto T, Fujioka T, Akaza H.(PubMed)
(93) Soy and isoflavone consumption in relation to prostate cancer risk in China by Lee MM, Gomez SL, Chang JS, Wey M, Wang RT, Hsing AW.(PubMed)
(94) Soy intake and cancer risk: a review of the in vitro and in vivo data by Messina MJ, Persky V, Setchell KD, Barnes S.(PubMed)
(94) Mediterranean Diet and Prostate Cancer Risk and Mortality in the Health Professionals Follow-up Study by Kenfield SA, Dupre N, Richman EL, Stampfer MJ, Chan JM, Giovannucci EL.(PubMed)
(95)  A prospective study of demographics, diet, and prostate cancer among men of Japanese ancestry in Hawaii by Severson RK, Nomura AM, Grove JS, Stemmermann GN.(PubMed)
(96) Alcohol consumption, smoking, and other risk factors and prostate cancer in a large health plan cohort in California (United States) by Hiatt RA, Armstrong MA, Klatsky AL, Sidney S.(PubMed)

No comments:

Post a Comment